972 resultados para newborn, plasmazytoid, dendritic
Resumo:
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-alpha while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of similar to 110pmol/mu l) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) similar to 100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.
Resumo:
Development of CD8 alpha beta CTL epitope-based vaccines requires an effective strategy capable of co-delivering large numbers of CTL epitopes, Here we describe a DNA plasmid encoding a polyepitope or polytope protein, which contained multiple contiguous minimal murine CTL epitopes, Mice vaccinated with this plasmid made MHC-restricted CTL responses to each of the epitopes, and protective CTL were demonstrated in recombinant vaccinia virus, influenza virus, and tumor challenge models, CTL responses generated by polytope DNA plasmid vaccination lasted for 1 yr, could be enhanced by co-delivering a gene for granulocyte-macrophage CSF, and appeared to be induced in the absence of CD4 T cell-mediated help, The ability to deliver large numbers of CTL epitopes using relatively small polytope constructs and DNA vaccination technology should find application in the design of human epitope-based CTL vaccines, in particular in vaccines against EBV, HIV, and certain cancers.
Resumo:
The co-evolution of papillomaviruses (PV) and their mammalian hosts has produced mechanisms by which PV might avoid specific and non-specific host immune responses. Low level expression of PV proteins in infected basal epithelial cells, together with an absence of inflammation and of virus-induced cell lysis, restricts the opportunity for effective PV protein presentation to immunocytes by dendritic cells. Additionally, PV early proteins, by a range of mechanisms, may restrict the efficacy of antigen presentation by these cells. Should an immune response be induced to PV antigens, resting keratinocytes (KC) appear resistant to interferon-gamma-enhanced mechanisms of cytotoxic T-lymphocyte (CTL)-mediated lysis, and expression of PV antigens by resting KC can tolerise PV-specific CTL. Thus, KC, in the absence of inflammation, may represent an immunologically privileged site for PV infection. Together, these mechanisms play a parr in allowing persistence of PV-induced proliferative skin lesions for months to years, even in immunocompetent hosts.
Resumo:
Despite extensive study of the numerous immunoregulatory mechanisms that contribute to the immune-privileged nature of the anterior chamber (AC) of the eye, little is known of the functional nature of antigen-presenting cells (APC) present in the tissues adjoining the AC. In the present study, we have compared the antigen-presenting capacity of dendritic cells (DC) and macrophages isolated from the normal rat iris. Whereas iris DC exhibited a potent ability to stimulate resting allogeneic T cells in MLR cultures (an in-vitro correlate of the ability to induce primary T cell responses), resident iris macrophages displayed negligible MLR-stimulatory capacity. Significantly, iris macrophages could efficiently elicit proliferation of primed antigen-specific T cells (an in-vitro correlate of the ability to act as local APC in secondary responses). This antigen-presenting activity was approximately half that of fully mature iris DC and considerably greater than that of freshly isolated iris DC. A key contributor to the effectiveness of resident iris macrophage antigen presentation was considered to be the absence of lymphocytostatic control of T cell proliferation exerted by these cells. The results indicate dichotomous but complementary roles for DC (immune surveillance) and macrophages (local antigen presentation in secondary responses) in this tissue.
Resumo:
The dendrite coherency point of Al-Si-Cu alloys was determined by thermal analysis and rheological measurement methods by performing parallel measurements at two cooling rates for aluminum alloys across a wide range of silicon and copper contents. Contrary to previous findings, the two methods yield significantly different values for the fraction solid at the dendrite coherency point. This disparity is greatest for alloys of low solute concentration. The results from this study also contradict previously reported tl ends in the effect of cooling rate on the dendritic coherency point. Consideration of the results shows that thermal analysis is not a valid technique for the measurement of coherency. Analysis of the results from rheological testing indicates that silicon concentration has a dominant effect on grain size and dendritic morphology, independent of cooling rate and copper content, and thus is the factor that determines the fraction solid at dendrite coherency for Al-Si-Cu alloys.
Resumo:
In this study, we characterize the electrophysiological and morphological properties of spiny principal neurons in the rat lateral amygdala using whole cell recordings in acute brain slices. These neurons exhibited a range of firing properties in response to prolonged current injection. Responses varied from cells that showed full spike frequency adaptation, spiking three to five times, to those that showed no adaptation. The differences in firing patterns were largely explained by the amplitude of the afterhyperpolarization (AHP) that followed spike trains. Cells that showed full spike frequency adaptation had large amplitude slow AHPs, whereas cells that discharged tonically had slow AHPs of much smaller amplitude. During spike trains, all cells showed a similar broadening of their action potentials. Biocytin-filled neurons showed a range of pyramidal-like morphologies, differed in dendritic complexity, had spiny dendrites, and differed in the degree to which they clearly exhibited apical versus basal dendrites. Quantitative analysis revealed no association between cell morphology and firing properties. We conclude that the discharge properties of neurons in the lateral nucleus, in response to somatic current injections, are determined by the differential distribution of ionic conductances rather than through mechanisms that rely on cell morphology.
Resumo:
The 75 kD low-affinity neurotrophin receptor (p75(NTR)) is expressed in developing and axotomised spinal motor neurons. There is now convincing evidence that p75NTR can, under some circumstances, become cytotoxic and promote neuronal cell death. We report here that a single application of antisense p75(NTR) oligodeoxynucleotides to the proximal nerve stumps of neonatal rats significantly reduces the loss of axotomised motor neurons compared to controls treated with nonsense oligodeoxynucleotides or phosphate-buffered saline. Our investigations also show that daily systemic intraperitoneal injections of antisense p75(NTR) oligodeoxynucleotides for 14 days significantly reduce the loss of axotomised motor neurons compared to controls. Furthermore, we found that systemic delivery over a similar period continues to be effective following axotomy when intraperitoneal injections were 1) administered after a delay of 24 hr, 2) limited to the first 7 days, or 3) administered every third day. In addition, p75(NTR) protein levels were reduced in spinal motor neurons following treatment with antisense p75(NTR) oligodeoxynucleotides. There were also no obvious side effects associated with antisense p75(NTR) oligodeoxynucleotide treatments as determined by behavioural observations and postnatal weight gain. Our findings indicate that antisense-based strategies could be a novel approach for the prevention of motor neuron degeneration associated with injuries or disease. (C) 2001 Wiley-Liss, Inc.
Resumo:
The cholinergic system is thought to play an important role in hippocampal-dependent learning and memory. However, the mechanism of action of the cholinergic system in these actions in not well understood. Here we examined the effect of muscarinic receptor stimulation in hippocampal CA1 pyramidal neurons using whole-cell recordings in acute brain slices coupled with high-speed imaging of intracellular calcium. Activation of muscarinic acetylcholine receptors by synaptic stimulation of cholinergic afferents or application of muscarinic agonist in CA1 pyramidal neurons evoked a focal rise in free calcium in the apical dendrite that propagated as a wave into the soma and invaded the nucleus. The calcium rise to a single action potential was reduced during muscarinic stimulation. Conversely, the calcium rise during trains of action potentials was enhanced during muscarinic stimulation. The enhancement of free intracellular calcium was most pronounced in the soma and nuclear regions. In many cases, the calcium rise was distinguished by a clear inflection in the rising phase of the calcium transient, indicative of a regenerative response. Both calcium waves and the amplification of action potential-induced calcium transients were blocked the emptying of intracellular calcium stores or by antagonism of inositol 1,4,5-trisphosphate receptors with heparin or caffeine. Ryanodine receptors were not essential for the calcium waves or enhancement of calcium responses. Because rises in nuclear calcium are known to initiate the transcription of novel genes, we suggest that these actions of cholinergic stimulation may underlie its effects on learning and memory.
Resumo:
A new model of halo formation in directional solidification is presented. The model describes halo formation in terms of competitive growth between the halo phase and coupled eutectic in liquid with a nominal composition that follows the primary phase liquidus extension with decreasing temperature. The model distinguishes between the effects of constitutional, capillarity and (where applicable) kinetic undercooling and avoids a number of theoretical inconsistencies associated with previous models. The critical growth rate for halo formation in directionally solidified hypereutectic Al-Si alloys is calculated using the model in conjunction with models of primary phase and coupled eutectic growth from the literature. The calculated result agrees reasonably well with the experimental result of Yilmaz and Elliott (Met. Sci. 18 (1984) 362), given the use of a relatively simple isolated dendrite tip model to calculate the growth undercooling of the halo tip. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
AlSi7Mg0.35 alloy was cast into permanent moulds using different pouring temperatures (725 to 625degreesC). As the pouring temperature decreased, the as-cast microstructure changed from a coarse dendritic structure, through fine equiaxed grains to fine rosette-like grains. The as-cast materials were then partially remelted and isothermally held at 580degreesC prior to semisolid casting into a stepped die. The feedstock material cast from a high temperature filled only half the die, with severe segregation and other defects. The low-temperature-poured material completely filled the die with negligible porosity. The quality of semisolid castings is significantly affected by the microstructure of the semisolid feedstock material that arises from a combination of as-cast and subsequent thermal treatment conditions. The paper describes (a) the influence of pouring temperature on the microstructure of feedstock; (b) microstructure evolution through remelting and (c) the quality of semisolid castings produced with this material. For A17Si0.35Mg alloy, low temperature pouring in the range of 625-650degreesC followed by suitable isothermal holding treatment can result in good quality semisolid casting.
Resumo:
Homologues of MHC class I proteins have been identified in the genomes of human, murine and rat cytomegaloviruses (CMVs). Given the pivotal role of the MHC class I protein in cellular immunity, it has been postulated that the viral homologues subvert the normal antiviral immune response of the host, thus promoting virus replication and dissemination in an otherwise hostile environment. This review focuses on recent studies of the CMV MHC class I homologues at the molecular, cellular and whole animal level and presents current hypotheses for their roles in the CMV life cycle.