944 resultados para multiplex reverse transcription-polymerase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work was prompted by the need to be able to identify the invasive mussel species, Perna viridis, in tropical Australian seas using techniques that do not rely solely on morphology. DNA-based molecular methods utilizing a polymerase chain reaction (PCR) approach were developed to distinguish unambiguously between the three species in the genus Perna. Target regions were portions of two mitochondrial genes, cox1 and nad4, and the intergenic spacer between these that occurs in at least two Perna species. Based on interspecific sequence comparisons of the nad4 gene, a conserved primer has been designed that can act as a forward primer in PCRs for any Perna species. Four reverse primers have also been designed, based on nad4 and intergenic spacer sequences, which yield species-specific products of different lengths when paired with the conserved forward primer. A further pair of primers has been designed that will amplify part of the cox1 gene of any Perna species, and possibly other molluscs, as a positive control to demonstrate that the PCR is working.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stretch of 71 nucleotides in a 1.2 kilobase pair Pst I fragment of rice DNA was identified as tRNA~ gene by hybridization and nucleotide sequence analyses. The hybridization of genomic DNA with the tRNA gene showed that there are about 10 glycine tRNA genes per diploid rice genome. The 3' and 5' internal control regions, where RNA polymerase III and transcription factors bind, were found to be present in the coding sequence. The gene was transcribed into a 4S product in an yeast cell-free extract. The substitution of 5' internal control region with analogous sequences from either M13mpl9 or M13mpl8 DNA did not affect the transcription of the gene in vitro. The changes in three highly conserved nucleotides in the consensus 5' internal control region (RGYNNARYGG; R = purine, Y = pyrimidine, N = any nucleotide) did not affect transcription showing that these nucleotides are not essential for promotion of transcription. There were two 16 base pair repeats, 'TGTTTGTTTCAGCTTA' at - 130 and - 375 positions upstream from the start of the gene. Deletion of 5' flanking sequences including the 16 base pair repeat at - 375 showed increased transcription indicating that these sequences negatively modulate the expression of the gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell proliferation, transcription and metabolism are regulated by complex partly overlapping signaling networks involving proteins in various subcellular compartments. The objective of this study was to increase our knowledge on such regulatory networks and their interrelationships through analysis of MrpL55, Vig, and Mat1 representing three gene products implicated in regulation of cell cycle, transcription, and metabolism. Genome-wide and biochemical in vitro studies have previously revealed MrpL55 as a component of the large subunit of the mitochondrial ribosome and demonstrated a possible role for the protein in cell cycle regulation. Vig has been implicated in heterochromatin formation and identified as a constituent of the RNAi-induced silencing complex (RISC) involved in cell cycle regulation and RNAi-directed transcriptional gene silencing (TGS) coupled to RNA polymerase II (RNAPII) transcription. Mat1 has been characterized as a regulatory subunit of cyclin-dependent kinase 7 (Cdk7) complex phosphorylating and regulating critical targets involved in cell cycle progression, energy metabolism and transcription by RNAPII. The first part of the study explored whether mRpL55 is required for cell viability or involved in a regulation of energy metabolism and cell proliferation. The results revealed a dynamic requirement of the essential Drosophila mRpL55 gene during development and suggested a function of MrpL55 in cell cycle control either at the G1/S or G2/M transition prior to cell differentiation. This first in vivo characterization of a metazoan-specific constituent of the large subunit of mitochondrial ribosome also demonstrated forth compelling evidence of the interconnection of nuclear and mitochondrial genomes as well as complex functions of the evolutionarily young metazoan-specific mitochondrial ribosomal proteins. In studies on the Drosophila RISC complex regulation, it was noted that Vig, a protein involved in heterochromatin formation, unlike other analyzed RISC associated proteins Argonaute2 and R2D2, is dynamically phosphorylated in a dsRNA-independent manner. Vig displays similarity with a known in vivo substrate for protein kinase C (PKC), human chromatin remodeling factor Ki-1/57, and is efficiently phosphorylated by PKC on multiple sites in vitro. These results suggest that function of the RISC complex protein Vig in RNAi-directed TGS and chromatin modification may be regulated through dsRNA-independent phosphorylation by PKC. In the third part of this study the role of Mat1 in regulating RNAPII transcription was investigated using cultured murine immortal fibroblasts with a conditional allele of Mat1. The results demonstrated that phosphorylation of the carboxy-terminal domain (CTD) of the large subunit of RNAPII in the heptapeptide YSPTSPS repeat in Mat-/- cells was over 10-fold reduced on Serine-5 and subsequently on Serine-2. Occupancy of the hypophosphorylated RNAPII in gene bodies was detectably decreased, whereas capping, splicing, histone methylation and mRNA levels were generally not affected. However, a subset of transcripts in absence of Mat1 was repressed and associated with decreased occupancy of RNAPII at promoters as well as defective capping. The results identify the Cdk7-CycH-Mat1 kinase submodule of TFIIH as a stimulatory non-essential regulator of transcriptional elongation and a genespecific essential factor for stable binding of RNAPII at the promoter region and capping. The results of these studies suggest important roles for both MrpL55 and Mat1 in cell cycle progression and their possible interplay at the G2/M stage in undifferentiated cells. The identified function of Mat1 and of TFIIH kinase complex in gene-specific transcriptional repression is challenging for further studies in regard to a possible link to Vig and RISC-mediated transcriptional gene silencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants constantly face adverse environmental conditions, such as drought or extreme temperatures that threaten their survival. They demonstrate astonishing metabolic flexibility in overcoming these challenges and one of the key responses to stresses is changes in gene expression leading to alterations in cellular functions. This is brought about by an intricate network of transcription factors and associated regulatory proteins. Protein-protein interactions and post-translational modifications are important steps in this control system along with carefully regulated degradation of signaling proteins. This work concentrates on the RADICAL-INDUCED CELL DEATH1 (RCD1) protein which is an important regulator of abiotic stress-related and developmental responses in Arabidopsis thaliana. Plants lacking this protein function display pleiotropic phenotypes including sensitivity to apoplastic reactive oxygen species (ROS) and salt, ultraviolet B (UV-B) and paraquat tolerance, early flowering and senescence. Additionally, the mutant plants overproduce nitric oxide, have alterations in their responses to several plant hormones and perturbations in gene expression profiles. The RCD1 gene is transcriptionally unresponsive to environmental signals and the regulation of the protein function is likely to happen post-translationally. RCD1 belongs to a small protein family and, together with its closest homolog SRO1, contains three distinguishable domains: In the N-terminus, there is a WWE domain followed by a poly(ADP-ribose) polymerase-like domain which, despite sequence conservation, does not seem to be functional. The C-terminus of RCD1 contains a novel domain called RST. It is present in RCD1-like proteins throughout the plant kingdom and is able to mediate physical interactions with multiple transcription factors. In conclusion, RCD1 is a key point of signal integration that links ROS-mediated cues to transcriptional regulation by yet unidentified means, which are likely to include post-translational mechanisms. The identification of RCD1-interacting transcription factors, most of whose functions are still unknown, opens new avenues for studies on plant stress as well as developmental responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double-stranded RNA (dsRNA) viruses encode only a single protein species that contains RNA-dependent RNA polymerase (RdRP) motifs. This protein is a central component in the life cycle of a dsRNA virus, carrying out both RNA transcription and replication. The architecture of viral RdRPs resembles that of a 'cupped right hand' with fingers, palm and thumb domains. Those applying de novo initiation have additional structural features, including a flexible C-terminal domain that constitutes the priming platform. Moreover, viral RdRPs must be able to interact with the incoming 3'-terminus of the template and position it so that a productive binary complex is formed. Bacteriophage phi6 of the Cystoviridae family is to date one of the best studied dsRNA viruses. The purified recombinant phi6 RdRP is highly active in vitro and possesses both RNA replication and transcription activities. The extensive biochemical observations and the atomic level crystal structure of the phi6 RdRP provides an excellent platform for in-depth studies of RNA replication in vitro. In this thesis, targeted structure-based mutagenesis, enzymatic assays and molecular mapping of phi6 RdRP and its RNA were used to elucidate the formation of productive RNA-polymerase binary complexes. The positively charged rim of the template tunnel was shown to have a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. This work demonstrated that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi6 RdRP can be greatly enhanced. Furthermore, proteolyzed phi6 RdRPs that possess a nick in the polypeptide chain at the hinge region, which is part of the extended loop, were better suited for catalysis at higher temperatures whilst favouring back-primed initiation. The clipped C-terminus remains associated with the main body of the polymerase and the hinge region, although structurally disordered, is involved in the control of C-terminal domain displacement. The accumulated knowhow on bacteriophage phi6 was utilized in the development of two technologies for the production of dsRNA: (i) an in vitro system that combines the T7 RNA polymerase and the phi6 RdRP to generate dsRNA molecules of practically unlimited length, and (ii) an in vivo RNA replication system based on restricted infection with phi6 polymerase complexes in bacterial cells to produce virtually unlimited amounts of dsRNA. The pools of small interfering RNAs derived from dsRNA produced by these systems were validated and shown to efficiently decrease the expression of both exogenous and endogenous targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vitro transcription analysis is important to understand the mechanism of transcription. Various assays for the analysis of initiation, elongation and termination form the basis for better understanding of the process. Purified RNA polymerase (RNAP) with high specific activity is necessary to carry out variety of these specific reactions. The RNAP purified from Mycobacterium smegmatis from exponential phase showed low promoter specificity in promoter-polymerase interaction studies. This is due to the presence of a large number of sigma factors during exponential phase and under-representation of sigma(A) required for house-keeping transcription. We describe an in vivo reconstitution of RNAP holoenzyme with sigma(A) and its purification, which resulted in holoenzyme with stoichiometric sigma(A) content. The reconstituted holoenzyme showed enhanced promoter-specific binding and promoter-specific-transcription activity compared to the enzyme isolated using standard procedure. Such in vivo reconstitution of stoichiometric holoenzyme could facilitate promoter-specific transcription assays, especially in organisms which encode a large number of sigma factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to or 70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rinderpest virus (RPV) large (L) protein is an integral part of the ribonucleoprotein (RNP) complex of the virus that is responsible for transcription and replication of the genome. Previously, we have shown that recombinant L protein coexpressed along with P protein (as the L-P complex) catalyses the synthesis of all viral mRNAs in vitro and the abundance of mRNAs follows a gradient of polarity, similar to the occurrence in vivo. In the present work, we demonstrate that the viral mRNAs synthesized in vitro by the recombinant L or purified RNP are capped and methylated at the N-7 guanine position. RNP from the purified virions, as well as recombinant L protein, shows RNA triphosphatase (RTPase) and guanylyl transferase (GT) activities. L protein present in the RNP complex catalyses the removal of gamma-phosphate from triphosphate-ended 25 nt RNA generated in vitro representing the viral N-terminal mRNA 5' sequence. The L protein forms a covalent enzyme-guanylate intermediate with the GMP moiety of GTP, whose formation is inhibited by the addition of pyrophosphate; thus, it exhibits characteristics of cellular GTs. The covalent bond between the enzyme and nucleotide is acid labile and alkali stable, indicating the presence of phosphoamide linkage. The C-terminal region (aa 1717-2183) of RPV L protein alone exhibits the first step of GT activity needed to form a covalent complex with GMP, though it lacks the ability to transfer GMP to substrate RNA. Here, we describe the biochemical characterization of the newly found RTPase/GT activity of L protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rifampicin and its derivatives are at the forefront of the current standard chemotherapeutic regimen for active tuberculosis; they act by inhibiting the transcription activity of prokaryotic RNA polymerase. Rifampicin is believed to interact with the beta subunit of RNA polymerase. However, it has been observed that protein-protein interactions with RNA polymerase core enzyme lead to its reduced susceptibility to rifampicin. This mechanism became more diversified with the discovery of RbpA, a novel RNA polymerase-binding protein, in Streptomyces coelicolor that could mitigate the effect of rifampicin on RNA polymerase activity. MsRbpA is a homologue of RbpA in Mycobacterium smegmatis. On deciphering the role of MsRbpA in M. smegmatis we found that it interacts with RNA polymerase and increases the rifampicin tolerance levels, both in vitro and in vivo. It interacts with the beta subunit of RNA polymerase. However, it was found to be incapable of rescuing rifampicin-resistant RNA polymerases in the presence of rifampicin at the respective IC50.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA protein interactions that occur during transcription initiation play an important role in regulating gene expression. To initiate transcription, RNA polymerase (RNAP) binds to promoters in a sequence-specific fashion. This is followed by a series of steps governed by the equilibrium binding and kinetic rate constants, which in turn determine the overall efficiency of the transcription process. We present here the first detailed kinetic analysis of promoter RNAP interactions during transcription initiation in the sigma(A)-dependent promoters P-rrnAPCL1, P-rrnB and P-gyr of Mycobacterium smegmatis. The promoters show comparable equilibrium binding affinity but differ significantly in open complex formation, kinetics of isomerization and promoter clearance. Furthermore, the two rrn promoters exhibit varied kinetic properties during transcription initiation and appear to be subjected to different modes of regulation. In addition to distinct kinetic patterns, each one of the housekeeping promoters studied has its own rate-limiting step in the initiation pathway, indicating the differences in their regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli RNA polymerase is a multi-subunit enzyme containing alpha(2)beta beta'omega sigma, which transcribes DNA template to intermediate RNA product in a sequence specific manner. Although most of the subunits are essential for its function, the smallest subunit omega (average molecular mass similar to 10,105 Da) can be deleted without affecting bacterial growth. Creating a mutant of the omega subunit can aid in improving the understanding of its role. Sequencing of rpoZ gene that codes for omega subunit from a mutant variant suggested a substitution mutation at position 60 of the protein: asparagine (N) -> aspartic acid (D). This mutation was verified at the protein level by following a typical mass spectrometry (MS) based bottom-up proteomic approach. Characterization of in-gel trypsin digested samples by reverse phase liquid chromatography (LC) coupled to electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) enabled in ascertaining this mutation. Electron transfer dissociation (ETD) of triply charged (M + 3H)(3+)] tryptic peptides (residues 53-67]), EIEEGLINNQILDVR from wild-type and EIEEGLIDNQILDVR from mutant, facilitated in unambiguously determining the site of mutation at residue 60.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All protein-encoding genes in eukaryotes are transcribed into messenger RNA (mRNA) by RNA Polymerase II (RNAP II), whose activity therefore needs to be tightly controlled. An important and only partially understood level of regulation is the multiple phosphorylations of RNAP II large subunit C-terminal domain (CTD). Sequential phosphorylations regulate transcription initiation and elongation, and recruit factors involved in co-transcriptional processing of mRNA. Based largely on studies in yeast models and in vitro, the kinase activity responsible for the phosphorylation of the serine-5 (Ser5) residues of RNAP II CTD has been attributed to the Mat1/Cdk7/CycH trimer as part of Transcription Factor IIH. However, due to the lack of good mammalian genetic models, the roles of both RNAP II Ser5 phosphorylation as well as TFIIH kinase in transcription have provided ambiguous results and the in vivo kinase of Ser5 has remained elusive. The primary objective of this study was to elucidate the role of mammalian TFIIH, and specifically the Mat1 subunit in CTD phosphorylation and general RNAP II-mediated transcription. The approach utilized the Cre-LoxP system to conditionally delete murine Mat1 in cardiomyocytes and hepatocytes in vivo and and in cell culture models. The results identify the TFIIH kinase as the major mammalian Ser5 kinase and demonstrate its requirement for general transcription, noted by the use of nascent mRNA labeling. Also a role for Mat1 in regulating general mRNA turnover was identified, providing a possible rationale for earlier negative findings. A secondary objective was to identify potential gene- and tissue-specific roles of Mat1 and the TFIIH kinase through the use of tissue-specific Mat1 deletion. Mat1 was found to be required for the transcriptional function of PGC-1 in cardiomyocytes. Transriptional activation of lipogenic SREBP1 target genes following Mat1 deletion in hepatocytes revealed a repressive role for Mat1apparently mediated via co-repressor DMAP1 and the DNA methyltransferase Dnmt1. Finally, Mat1 and Cdk7 were also identified as a negative regulators of adipocyte differentiation through the inhibitory phosphorylation of Peroxisome proliferator-activated receptor (PPAR) γ. Together, these results demonstrate gene- and tissue-specific roles for the Mat1 subunit of TFIIH and open up new therapeutic possibilities in the treatment of diseases such as type II diabetes, hepatosteatosis and obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Combination antiretroviral therapy (cART) has decreased morbidity and mortality of individuals infected with human immunodeficiency virus type 1 (HIV-1). Its use, however, is associated with adverse effects which increase the patients risk of conditions such as diabetes and coronary heart disease. Perhaps the most stigmatizing side effect is lipodystrophy, i.e., the loss of subcutaneous adipose tissue (SAT) in the face, limbs and trunk while fat accumulates intra-abdominally and dorsocervically. The pathogenesis of cART-associated lipodystrophy is obscure. Nucleoside reverse transcriptase inhibitors (NRTI) have been implicated to cause lipoatrophy via mitochondrial toxicity. There is no known effective treatment for cART-associated lipodystrophy during unchanged antiretroviral regimen in humans, but in vitro data have shown uridine to abrogate NRTI-induced toxicity in adipocytes. Aims: To investigate whether i) cART or lipodystrophy associated with its use affect arterial stiffness; ii) lipoatrophic SAT is inflamed compared to non-lipoatrophic SAT; iii) abdominal SAT from patients with compared to those without cART-associated lipoatrophy differs with respect to mitochondrial DNA (mtDNA) content, adipose tissue inflammation and gene expression, and if NRTIs stavudine and zidovudine are associated with different degree of changes; iv) lipoatrophic abdominal SAT differs from preserved dorsocervical SAT with respect to mtDNA content, adipose tissue inflammation and gene expression in patients with cART-associated lipodystrophy and v) whether uridine can revert lipoatrophy and the associated metabolic disturbances in patients on stavudine or zidovudine based cART. Subjects and methods: 64 cART-treated patients with (n=45) and without lipodystrophy/-atrophy (n=19) were compared cross-sectionally. A marker of arterial stiffness, heart rate corrected augmentation index (AgIHR), was measured by pulse wave analysis. Body composition was measured by magnetic resonance imaging and dual-energy X-ray absorptiometry, and liver fat content by proton magnetic resonance spectroscopy. Gene expression and mtDNA content in SAT were assessed by real-time polymerase chain reaction and microarray. Adipose tissue composition and inflammation were assessed by histology and immunohistochemistry. Dorsocervical and abdominal SAT were studied. The efficacy and safety of uridine for the treatment of cART-associated lipoatrophy were evaluated in a randomized, double-blind, placebo-controlled 3-month trial in 20 lipoatrophic cART-treated patients. Results: Duration of antiretroviral treatment and cumulative exposure to NRTIs and protease inhibitors, but not the presence of cART-associated lipodystrophy, predicted AgIHR independent of age and blood pressure. Gene expression of inflammatory markers was increased in SAT of lipodystrophic as compared to non-lipodystrophic patients. Expression of genes involved in adipogenesis, triglyceride synthesis and glucose disposal was lower and of those involved in mitochondrial biogenesis, apoptosis and oxidative stress higher in SAT of patients with than without cART-associated lipoatrophy. Most changes were more pronounced in stavudine-treated than in zidovudine-treated individuals. Lipoatrophic SAT had lower mtDNA than SAT of non-lipoatrophic patients. Expression of inflammatory genes was lower in dorsocervical than in abdominal SAT. Neither depot had characteristics of brown adipose tissue. Despite being spared from lipoatrophy, dorsocervical SAT of lipodystrophic patients had lower mtDNA than the phenotypically similar corresponding depot of non-lipodystrophic patients. The greatest difference in gene expression between dorsocervical and abdominal SAT, irrespective of lipodystrophy status, was in expression of homeobox genes that regulate transcription and regionalization of organs during embryonal development. Uridine increased limb fat and its proportion of total fat, but had no effect on liver fat content and markers of insulin resistance. Conclusions: Long-term cART is associated with increased arterial stiffness and, thus, with higher cardiovascular risk. Lipoatrophic abdominal SAT is characterized by inflammation, apoptosis and mtDNA depletion. As mtDNA is depleted even in non-lipoatrophic dorsocervical SAT, lipoatrophy is unlikely to be caused directly by mtDNA depletion. Preserved dorsocervical SAT of patients with cART-associated lipodystrophy is less inflamed than their lipoatrophic abdominal SAT, and does not resemble brown adipose tissue. The greatest difference in gene expression between dorsocervical and abdominal SAT is in expression of transcriptional regulators, homeobox genes, which might explain the differential susceptibility of these adipose tissue depots to cART-induced toxicity. Uridine is able to increase peripheral SAT in lipoatrophic patients during unchanged cART.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA-dependent RNA polymerase II from Candida utilis has been purified to near homogeneity. The purified enzyme resolved into three subforms, viz. IIO, IIA and IIB. On SDS-PAGE the enzyme showed ten polypeptides with molecular weights in the range of 205 kDa to 14 kDa. By two dimensional electrophoresis (IEF followed by SDS-PAGE) the presence of basic and acidic polypeptides has been demonstrated. The enzyme showed Km values of 5, 5.6 and 8 mu M for GTP, CTP and ATP, respectively, and the activity was inhibited by low levels of oc-amanitin and antibodies raised against bovine RNA polymerase II. By Western blot analysis the enzyme was found to cross-react with antibodies to bovine RNA polymerase II. RNA polymerase II from G. utilis is a phosphoprotein, the subunits RPB1 and RPB10 were found to be phosphorylated. Analysis of carboxy-terminal domain indicated that it was functionally redundant at least in case of nonspecific transcription, implicating its role in other nuclear processes, such as promoter specific initiation or transcription activation or RNA processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the beta' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the beta' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the beta' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.