955 resultados para movie camera
Resumo:
Within the context of active vision, scant attention has been paid to the execution of motion saccades—rapid re-adjustments of the direction of gaze to attend to moving objects. In this paper we first develop a methodology for, and give real-time demonstrations of, the use of motion detection and segmentation processes to initiate capture saccades towards a moving object. The saccade is driven by both position and velocity of the moving target under the assumption of constant target velocity, using prediction to overcome the delay introduced by visual processing. We next demonstrate the use of a first order approximation to the segmented motion field to compute bounds on the time-to-contact in the presence of looming motion. If the bound falls below a safe limit, a panic saccade is fired, moving the camera away from the approaching object. We then describe the use of image motion to realize smooth pursuit, tracking using velocity information alone, where the camera is moved so as to null a single constant image motion fitted within a central image region. Finally, we glue together capture saccades with smooth pursuit, thus effecting changes in both what is being attended to and how it is being attended to. To couple the different visual activities of waiting, saccading, pursuing and panicking, we use a finite state machine which provides inherent robustness outside of visual processing and provides a means of making repeated exploration. We demonstrate in repeated trials that the transition from saccadic motion to tracking is more likely to succeed using position and velocity control, than when using position alone.
Resumo:
The objective of a Visual Telepresence System is to provide the operator with a high fidelity image from a remote stereo camera pair linked to a pan/tilt device such that the operator may reorient the camera position by use of head movement. Systems such as these which utilise virtual reality style helmet mounted displays have a number of limitations. The geometry of the camera positions and of the displays is generally fixed and is most suitable only for viewing elements of a scene at a particular distance. To address such limitations, a prototype system has been developed where the geometry of the displays and cameras is dynamically controlled by the eye movement of the operator. This paper explores why it is necessary to actively adjust the display system as well as the cameras and justifies the use of mechanical adjustment of the displays as an alternative to adjustment by electronic or image processing methods. The electronic and mechanical design is described including optical arrangements and control algorithms. The performance and accuracy of the system is assessed with respect to eye movement.
Resumo:
A robot mounted camera is useful in many machine vision tasks as it allows control over view direction and position. In this paper we report a technique for calibrating both the robot and the camera using only a single corresponding point. All existing head-eye calibration systems we have encountered rely on using pre-calibrated robots, pre- calibrated cameras, special calibration objects or combinations of these. Our method avoids using large scale non-linear optimizations by recovering the parameters in small dependent groups. This is done by performing a series of planned, but initially uncalibrated robot movements. Many of the kinematic parameters are obtained using only camera views in which the calibration feature is at, or near the image center, thus avoiding errors which could be introduced by lens distortion. The calibration is shown to be both stable and accurate. The robotic system we use consists of camera with pan-tilt capability mounted on a Cartesian robot, providing a total of 5 degrees of freedom.
Resumo:
A visual telepresence system has been developed at the University of Reading which utilizes eye tracing to adjust the horizontal orientation of the cameras and display system according to the convergence state of the operator's eyes. Slaving the cameras to the operator's direction of gaze enables the object of interest to be centered on the displays. The advantage of this is that the camera field of view may be decreased to maximize the achievable depth resolution. An active camera system requires an active display system if appropriate binocular cues are to be preserved. For some applications, which critically depend upon the veridical perception of the object's location and dimensions, it is imperative that the contribution of binocular cues to these judgements be ascertained because they are directly influenced by camera and display geometry. Using the active telepresence system, we investigated the contribution of ocular convergence information to judgements of size, distance and shape. Participants performed an open- loop reach and grasp of the virtual object under reduced cue conditions where the orientation of the cameras and the displays were either matched or unmatched. Inappropriate convergence information produced weak perceptual distortions and caused problems in fusing the images.
Resumo:
While the Cluster spacecraft were located near the high-latitude magnetopause, between 1010 and 1040 UT on 16 January 2004, three typical flux transfer event (FTE) signatures were observed. During this interval, simultaneous and conjugated all‐sky camera measurements, recorded at Yellow River Station, Svalbard, are available at 630.0 and 557.7 nm that show poleward‐moving auroral forms (PMAFs), consistent with magnetic reconnection at the dayside magnetopause. Simultaneous FTEs seen at the magnetopause mainly move northward, but having duskward (eastward) and tailward velocity components, roughly consistent with the observed direction of motion of the PMAFs in all‐sky images. Between the PMAFs meridional keograms, extracted from the all‐sky images, show intervals of lower intensity aurora which migrate equatorward just before the PMAFs intensify. This is strong evidence for an equatorward eroding and poleward moving open‐closed boundary associated with a variable magnetopause reconnection rate under variable IMF conditions. From the durations of the PMAFs, we infer that the evolution time of FTEs is 5–11 minutes from its origin on the magnetopause to its addition to the polar cap.
Resumo:
Gene Chips are finding extensive use in animal and plant science. Generally microarrays are of two kind, cDNA or oligonucleotide. cDNA microarrays were developed at Stanford University, whereas oligonucleotide were developed by Affymetrix. The construction of cDNA or oligonucleotide on a glass slide helps to compare the gene expression level of treated and control samples by labeling mRNA with green (Cy3) and red (Cy5) dyes. The hybridized gene chip emit fluorescence whose intensity and colour can be measured. RNA labeling can be done directly or indirectly. Indirect method involves amino allyle modified dUTP instead of pre-labelled nucleotide. Hybridization of gene chip generally occurs in a minimum volume possible and to ensure the hetroduplex formation, a ten fold more DNA is spotted on slide than in the solutions. A confocal or semi confocal laser technologies coupled with CCD camera are used for image acquisition. For standardization, house keeping genes are used or cDNA are spotted in gene chip that are not present in treated or control samples. Moreover, statistical analysis (image analysis) and cluster analysis softwares have been developed by Stanford University. The gene-chip technology has many applications like expression analysis, gene expression signatures (molecular phenotypes) and promoter regulatory element co-expression.
Resumo:
Accurate calibration of a head mounted display (HMD) is essential both for research on the visual system and for realistic interaction with virtual objects. Yet, existing calibration methods are time consuming and depend on human judgements, making them error prone, and are often limited to optical see-through HMDs. Building on our existing approach to HMD calibration Gilson et al. (2008), we show here how it is possible to calibrate a non-see-through HMD. A camera is placed inside a HMD displaying an image of a regular grid, which is captured by the camera. The HMD is then removed and the camera, which remains fixed in position, is used to capture images of a tracked calibration object in multiple positions. The centroids of the markers on the calibration object are recovered and their locations re-expressed in relation to the HMD grid. This allows established camera calibration techniques to be used to recover estimates of the HMD display's intrinsic parameters (width, height, focal length) and extrinsic parameters (optic centre and orientation of the principal ray). We calibrated a HMD in this manner and report the magnitude of the errors between real image features and reprojected features. Our calibration method produces low reprojection errors without the need for error-prone human judgements.
Resumo:
This article presents findings and seeks to establish the theoretical markers that indicate the growing importance of fact-based drama in screen and theatre performance to the wider Anglophone culture. During the final decade of the twentieth century and the opening one of the twenty-first, television docudrama and documentary theatre have grown in visibility and importance in the UK, providing key responses to social, cultural and political change over the millennial period. Actors were the prime focus for the enquiry principally because so little research has been done into the special demands that fact-based performance makes on them. The main emphasis in actor training (in the UK at any rate) is, as it always has been, on preparation for fictional drama. Preparation in acting schools is also heavily geared towards stage performance. Our thesis was that performers called upon to play the roles of real people, in whatever medium, have added responsibilities both towards history and towards real individuals and their families. Actors must engage with ethical questions whether they like it or not, and we found them keenly aware of this. In the course of the research, we conducted 30 interviews with a selection of actors ranging from the experienced to the recently-trained. We also interviewed a few industry professionals and actor trainers. Once the interviews started it was clear that actors themselves made little or no distinction between how they set about their work for television and film. The essential disciplines for work in front of the camera, they told us, are the same whether the camera is electronic or photographic. Some adjustments become necessary, of course in the multi-camera TV studio. But much serious drama for the screen is made on film anyway. We found it was also the case that young actors now tend to get their first paid employment before a camera rather than on a stage. The screen-before-stage tendency, along with the fundamental re-shaping that has gone on in the British theatre since at least the early 1980s, had implications for actor training. We have also found that theatre work still tends to be most valued by actors. For all the actors we interviewed, theatre was what they liked doing best because it was there they could practice and develop their skills, there they could work most collectively towards performance, and there they could more directly experience audience feedback in the real time of the stage play. The current world of television has been especially constrained in regard to rehearsal time in comparison to theatre (and, to a lesser extent, film). This has also affected actors’ valuation of their work. Theatre is, and is not, the most important medium in which they find work. Theatre is most important spiritually and intellectually, because in theatre is collaborative, intensive, and involving; theatre is not as important in financial and career terms, because it is not as lucrative and not as visible to a large public as acting for the screen. Many actors took the view that, for all the industrial differences that do affect them and inevitably interest the academic, acting for the visible media of theatre, film and television involved fundamentally the same process with slightly different emphases.
Resumo:
This article extends the traditions of style-based criticism through an encounter with the insights that can be gained from engaging with filmmakers at work. By bringing into relationship two things normally thought of as separate: production history and disinterested critical analysis, the discussion aims to extend the subjects which criticism can appreciate as well as providing some insights on the creative process. Drawing on close analysis, on observations made during fieldwork and on access to earlier cuts of the film, this article looks at a range of interrelated decision-making anchored by the reading of a particular sequence. The article examines changes the film underwent in the different stages of production, and some of the inventions deployed to ensure key themes and ideas remained in play, as other elements changed. It draws conclusions which reveal perspectives on the filmmaking process, on collaboration, and on the creative response to material realities. The article reveals elements of the complexity of the process of the construction of image and soundtrack, and extends the range of filmmakers’ choices which are part of a critical dialogue. Has a relationship to ‘Sleeping with half open eyes: dreams and realities in The Cry of the Owl’, Movie: A Journal of Film Criticism, 1, (2010) which provides a broader interpretative context for the enquiry.
Resumo:
The evolution of the global orientation parameter for a series of aqueous hydroxypropylcellulose solutions both during and following the cessation of a steady-state shear flow is reported. Time-resolved orientation measurements were made in situ through a novel X-ray rheometer coupled with a two-dimensional electronic X-ray camera, and using an intense X-ray source at the LURE synchrotron. After the cessation of flow, the global orientation decreases from the steady-state orientation level to zero following shear flow at low shear rate or to a small but finite value after flow at a high shear rate. The decrease of orientation with time shows different behaviour, dependent upon the previously applied shear rate.
Resumo:
Visual Telepresence system which utilize virtual reality style helmet mounted displays have a number of limitations. The geometry of the camera positions and of the display is fixed and is most suitable only for viewing elements of a scene at a particular distance. In such a system, the operator's ability to gaze around without use of head movement is severely limited. A trade off must be made between a poor viewing resolution or a narrow width of viewing field. To address these limitations a prototype system where the geometry of the displays and cameras is dynamically controlled by the eye movement of the operator has been developed. This paper explores the reasons why is necessary to actively adjust both the display system and the cameras and furthermore justifies the use of mechanical adjustment of the displays as an alternative to adjustment by electronic or image processing methods. The electronic and mechanical design is described including optical arrangements and control algorithms, An assessment of the performance of the system against a fixed camera/display system when operators are assigned basic tasks involving depth and distance/size perception. The sensitivity to variations in transient performance of the display and camera vergence is also assessed.
Resumo:
Intelligent viewing systems are required if efficient and productive teleoperation is to be applied to dynamic manufacturing environments. These systems must automatically provide remote views to an operator which assist in the completion of the task. This assistance increases the productivity of the teleoperation task if the robot controller is responsive to the unpredictable dynamic evolution of the workcell. Behavioral controllers can be utilized to give reactive 'intelligence.' The inherent complex structure of current systems, however, places considerable time overheads on any redesign of the emergent behavior. In industry, where the remote environment and task frequently change, this continual redesign process becomes inefficient. We introduce a novel behavioral controller, based on an 'ego-behavior' architecture, to command an active camera (a camera mounted on a robot) within a remote workcell. Using this ego-behavioral architecture the responses from individual behaviors are rapidly combined to produce an 'intelligent' responsive viewing system. The architecture is single-layered, each behavior being autonomous with no explicit knowledge of the number, description or activity of other behaviors present (if any). This lack of imposed structure decreases the development time as it allows each behavior to be designed and tested independently before insertion into the architecture. The fusion mechanism for the behaviors provides the ability for each behavior to compete and/or co-operate with other behaviors for full or partial control of the viewing active camera. Each behavior continually reassesses this degree of competition or co-operation by measuring its own success in controlling the active camera against pre-defined constraints. The ego-behavioral architecture is demonstrated through simulation and experimentation.
Resumo:
Visual telepresence seeks to extend existing teleoperative capability by supplying the operator with a 3D interactive view of the remote environment. This is achieved through the use of a stereo camera platform which, through appropriate 3D display devices, provides a distinct image to each eye of the operator, and which is slaved directly from the operator's head and eye movements. However, the resolution within current head mounted displays remains poor, thereby reducing the operator's visual acuity. This paper reports on the feasibility of incorporation of eye tracking to increase resolution and investigates the stability and control issues for such a system. Continuous domain and discrete simulations are presented which indicates that eye tracking provides a stable feedback loop for tracking applications, though some empirical testing (currently being initiated) of such a system will be required to overcome indicated stability problems associated with micro saccades of the human operator.
Resumo:
The fundamental principles of the teaching methodology followed for dyslexic learners evolve around the need for a multisensory approach, which would advocate repetition of learning tasks in an enjoyable way. The introduction of multimedia technologies in the field of education has supported the merging of new tools (digital camera, scanner) and techniques (sounds, graphics, animation) in a meaningful whole. Dyslexic learners are now given the opportunity to express their ideas using these alternative media and participate actively in the educational process. This paper discussed the preliminary findings of a single case study of two English monolingual dyslexic children working together to create an open-ended multimedia project on a laptop computer. The project aimed to examine whether and if the multimedia environment could enhance the dyslexic learners’ skills in composition. Analysis of the data has indicated that the technological facilities gave the children the opportunity to enhance the style and content of their work for a variety of audiences and to develop responsibilities connected to authorship.