993 resultados para motor prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general formula for the prediction of drained weight of canned prawn processed under laboratory condition has been worked out earlier (Chaudhuri et al., 1978). Attempts were made in this communication to modify the general formula to predict the drained weight under commercial conditions of processing particularly blanching, as the moisture content of meat depends on the quantum of heat received during blanching (Govindan, 1975).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thus far most studies of operational energy use of buildings fail to take a longitudinal view, or in other words, do not take into account how operational energy use changes during the lifetime of a building. However, such a view is important when predicting the impact of climate change, or for long term energy accounting purposes. This article presents an approach to deliver a longitudinal prediction of operational energy use. The work is based on the review of deterioration in thermal performance, building maintenance effects, and future climate change. The key issues are to estimate the service life expectancy and thermal performance degradation of building components while building maintenance and changing weather conditions are considered at the same time. Two examples are presented to demonstrate the application of the deterministic and stochastic approaches, respectively. The work concludes that longitudinal prediction of operational energy use is feasible, but the prediction will depend largely on the availability of extensive and reliable monitoring data. This premise is not met in most current buildings. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is becoming a serious issue for the construction industry, since the time scales at which climate change takes place can be expected to show a true impact on the thermal performance of buildings and HVAC systems. In predicting this future building performance by means of building simulation, the underlying assumptions regarding thermal comfort conditions and the related heating, ventilating and air conditioning (HVAC) control set points become important. This article studies the thermal performance of a reference office building with mixedmode ventilation in the UK, using static and adaptive thermal approaches, for a series of time horizons (2020, 2050 and 2080). Results demonstrate the importance of the implementation of adaptive thermal comfort models, and underpin the case for its use in climate change impact studies. Adaptive thermal comfort can also be used by building designers to make buildings more resilient towards change. © 2010 International Building Performance Simulation Association (IBPSA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.