944 resultados para monocytes, dendritic cells, macrophages, DNA-repair, ROS, ionizing radiation, temozolomide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidermal keratinocytes produce and secrete antimicrobial peptides (AMPs) that subsequently form a chemical shield on the skin surface. Cathelicidins are one family of AMPs in skin with various further immune functions. Consequently, dysfunction of these peptides has been implicated in the pathogenesis of inflammatory skin disease. In particular, the cathelicidin LL-37 is overexpressed in inflamed skin in psoriasis, binds to extracellular self-DNA released from dying cells and converts self-DNA in a potent stimulus for plasmacytoid dendritic cells (pDCs). Subsequently, pDCs secrete type I interferons and trigger an auto-inflammatory cascade. Paradoxically, therapies targeting the vitamin D pathway such as vitamin D analogues or UVB phototherapy ameliorate cutaneous inflammation in psoriasis but strongly induce cathelicidin expression in skin at the same time. Current evidence now suggests that self-DNA present in the cytosol of keratinocytes is also pro-inflammatory active and triggers IL-1β secretion in psoriatic lesions through the AIM2 inflammasome. This time, however, binding of LL-37 to self-DNA neutralizes DNA-mediated inflammation. Hence, cathelicidin LL-37 shows contrasting roles in skin inflammation in psoriasis and might serve as a target for novel therapies for this chronic skin disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles molecular dynamics simulations, we have investigated the notion that amino acids can play a protective role when DNA is exposed to excess electrons produced by ionizing radiation. In this study we focus on the interaction of glycine with the DNA nucleobase thymine. We studied thymine-glycine dimers and a condensed phase model consisting of one thymine molecule solvated in amorphous glycine. Our results show that the amino acid acts as a protective agent for the nucleobase in two ways. If the excess electron is initially captured by the thymine, then a proton is transferred in a barrier-less way from a neighboring hydrogen-bonded glycine. This stabilizes the excess electron by reducing the net partial charge on the thymine. In the second mechanism the excess electron is captured by a glycine, which acts as a electron scavenger that prevents electron localization in DNA. Both these mechanisms introduce obstacles to further reactions of the excess electron within a DNA strand, e.g. by raising the free energy barrier associated with strand breaks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of gamma-H2AX foci in blood lymphocytes is a promising approach for rapid dose estimation to support patient triage after a radiation accident but has one major drawback: the rapid decline of foci levels post-exposure cause major uncertainties in situations where the exact timing between exposure and blood sampling is unknown. To address this issue, radiation-induced apoptosis (RIA) in lymphocytes was investigated using fluorogenic inhibitors of caspases (FLICA) as an independent biomarker for radiation exposure, which may complement the gamma-H2AX assay. Ex vivo X-irradiated peripheral blood lymphocytes from 17 volunteers showed dose-and time-dependent increases in radiation-induced apoptosis over the first 3 days after exposure, albeit with considerable interindividual variation. Comparison with gamma-H2AX and 53BP1 foci counts suggested an inverse correlation between numbers of residual foci and radiation-induced apoptosis in lymphocytes at 24 h postirradiation (P = 0.007). In T-helper (CD4), T-cytotoxic (CD8) and B-cells (CD19), some significant differences in radiation induced DSBs or apoptosis were observed, however no correlation between foci and apoptosis in lymphocyte subsets was observed at 24 h postirradiation. While gamma-H2AX and 53BP1 foci were rapidly induced and then repaired after exposure, radiation-induced apoptosis did not become apparent until 24 h after exposure. Data from six volunteers with different ex vivo doses and post-exposure times were used to test the capability of the combined assay. Results show that simultaneous analysis of gamma-H2AX and radiation-induced apoptosis may provide a rapid and more accurate triage tool in situations where the delay between exposure and blood sampling is unknown compared to gamma-H2AX alone. This combined approach may improve the accuracy of dose estimations in cases where blood sampling is performed days after the radiation exposure. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of microarray technology to the scientific and medical communities has dramatically changed the way in which we now address basic biomedical questions. Expression profiling using microarrays facilitates an experimental approach where alterations in the transcript level of entire transcriptomes can be simultaneously assayed in response to defined stimuli. We have used microarray analysis to identify downstream transcriptional targets of the BRCA1 (Breast Cancer 1) tumour-suppressor gene as a means of defining its function. BRCA1 has been implicated in the predisposition to early onset breast and ovarian cancer and while its exact function remains to be defined, roles in DNA repair, cell-cycle control and transcriptional regulation have been implied. In the current study we have generated cell lines with tetracycline-regulated, inducible expression of BRCA1 as a tool to identify genes, which might represent important effectors of BRCA1 function. Oligonucleotide array-based expression profiling identified a number of genes that were upregulated at various times following inducible expression of BRCA1 including the DNA damage-responsive gene GADD45 (Growth Arrest after DNA Damage). Identified targets were confirmed by Northern blot analysis and their functional significance as BRCA1 targets examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BRCA1 and BRCA2 are highly penetrant breast and ovarian cancer susceptibility genes that are mutated in a significant proportion of familial breast and ovarian cancer syndromes. Both of these genes are tumour suppressors, the products of which play vital roles in the cellular response to DNA damage. These proteins function in a number of cellular pathways in order to maintain genomic stability including DNA damage signaling, DNA repair, cell cycle regulation, protein ubiquitination, chromatin remodeling, transcriptional regulation and apoptosis. This chapter will discuss the functions of these proteins and how they relate to tumour development, and therapy. © 2009 Springer Science+Business Media B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear factor kappa B (NF-kappaB) activation has been proposed as a cardinal feature of tumourigenesis, although the precise mechanism, frequency, relevance, and extent of NF-kappaB activation in lymphomas remain to be fully elucidated. In this study, expression profiling and tissue microarray studies of 209 and 323 non-Hodgkin's lymphomas (NHLs) respectively, including the most frequent sub-types of NHL, were employed to generate a hypothesis concerning the most common NF-kappaB targets in NHL. These analyses showed that NF-kappaB activation is a common phenomenon in NHL, resulting in the expression of distinct sets of NF-kappaB target genes, depending on the cell context. BCL2 and BIRC5/Survivin were identified as key NF-kappaB targets and their expression distinguished small and aggressive B-cell lymphomas, respectively. Interestingly, in the vast majority of B-cell lymphomas, the expression of these markers was mutually exclusive. A set of genes was identified whose expression correlates either with BIRC5/Survivin or with BCL2. BIRC5/Survivin expression, in contrast to BCL2, was associated with a signature of cell proliferation (overexpression of cell cycle control, DNA repair, and polymerase genes), which may contribute to the aggressive phenotype and poor prognosis of these lymphomas. Strikingly, mantle cell lymphoma and chronic lymphocytic leukaemia expressed highly elevated levels of BCL2 protein and mRNA, higher than that observed in reactive mantle zone cells or even in follicular lymphomas, where BCL2 expression is deregulated through the t(14;18) translocation. In parallel with this observation, BIRC5/Survivin expression was higher in Burkitt's lymphoma and diffuse large B-cell lymphoma than in non-tumoural germinal centre cells. In vitro studies confirmed that NF-kappaB activation contributes to the expression of both markers. In cell lines representing aggressive lymphomas, NF-kappaB inhibition resulted in a decrease in BIRC5/Survivin expression. Meanwhile, in chronic lymphocytic leukaemia (CLL)-derived lymphocytes, NF-kappaB inhibition resulted in a marked decrease in BCL2 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxaliplatin-based chemotherapy is the standard of care in patients with high-risk stage II and stage III colorectal cancer as well as in patients with advanced disease. Unfortunately, a large proportion of patients offered oxaliplatin fail to benefit from it. In the era of personalized treatment, there are strong efforts to identify biomarkers that will predict efficacy to oxaliplatin-based treatments. Excision repair cross-complementation group 1 (ERCC1) is a key element in the nucleotide excision repair (NER) pathway, which is responsible for repairing DNA adducts induced by platinum compounds. ERCC1 has recently been shown to be closely associated with outcome in patients with non-small-cell lung cancer (NSCLC): both high ERCC1 protein and gene expression are associated with resistance to cisplatin-based chemotherapy and better outcome without treatment. Therefore, ERCC1 has the potential to be used as a strong candidate biomarker, both predictive and prognostic, for colorectal cancer. This review will focus on the preclinical and clinical evidences supporting ERCC1 as a major molecule in oxaliplatin resistance. In addition, the important technologies used to assess ERCC1 gene and protein expression will be highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paediatric cardiac catheterizations may result in the administration of substantial amounts of iodinated contrast media and ionizing radiation. The aim of this work was to investigate the effect of iodinated contrast media in combination with in vitro and in vivo X-ray radiation on lymphocyte DNA. Six concentrations of iodine (15, 17.5, 30, 35, 45, and 52.5 mg of iodine per mL blood) represented volumes of iodinated contrast media used in the clinical setting. Blood obtained from healthy volunteers was mixed with iodinated contrast media and exposed to radiation doses commonly used in paediatric cardiac catheterizations (0 mGy, 70 mGy, 140 mGy, 250 mGy and 450 mGy). Control samples contained no iodine. For in vivo experimentation, pre and post blood samples were collected from children undergoing cardiac catheterization, receiving iodine concentrations of up to 51 mg of iodine per mL blood and radiation doses of up to 400 mGy. Fluorescence microscopy was performed to assess γH2AX-foci induction, which corresponded to the number of DNA double-strand breaks. The presence of iodine in vitro resulted in significant increases of DNA double-strand breaks beyond that induced by radiation for ≥17.5 mg/mL iodine to blood. The in vivo effects of contrast media on children undergoing cardiac catheterization resulted in a 19% increase in DNA double-strand breaks in children receiving an average concentration of 19 mg/mL iodine to blood. A larger investigation is required to provide further information of the potential benefit of lowering the amount of iodinated contrast media received during X-ray radiation investigations. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of central nervous system remyelination declines with age. This is in part due to an age-associated decline in the phagocytic removal of myelin debris, which contains inhibitors of oligodendrocyte progenitor cell differentiation. In this study, we show that expression of genes involved in the retinoid X receptor pathway are decreased with ageing in both myelin-phagocytosing human monocytes and mouse macrophages using a combination of in vivo and in vitro approaches. Disruption of retinoid X receptor function in young macrophages, using the antagonist HX531, mimics ageing by reducing myelin debris uptake. Macrophage-specific RXRα (Rxra) knockout mice revealed that loss of function in young mice caused delayed myelin debris uptake and slowed remyelination after experimentally-induced demyelination. Alternatively, retinoid X receptor agonists partially restored myelin debris phagocytosis in aged macrophages. The agonist bexarotene, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profile in multiple sclerosis patient monocytes to a more youthful profile and enhanced myelin debris phagocytosis by patient cells. These results reveal the retinoid X receptor pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retina, an immune privileged tissue, has specialized immune defense mechanisms against noxious insults that may exist in diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), uveoretinitis and glaucoma. The defense system consists of retinal innate immune cells (including microglia, perivascular macrophages, and a small population of dendritic cells) and the complement system. Under normal aging conditions, retinal innate immune cells and the complement system undergo a low-grade activation (parainflammation) which is important for retinal homeostasis. In disease states such as AMD and DR, the parainflammatory response is dysregulated and develops into detrimental chronic inflammation. Complement activation in the retina is an important part of chronic inflammation and may contribute to retinal pathology in these disease states. Here, we review the evidence that supports the role of uncontrolled or dysregulated complement activation in various retinal degenerative and angiogenic conditions. We also discuss current strategies that are used to develop complement-based therapies for retinal diseases such as AMD. The potential benefits of complement inhibition in DR, uveoretinitis and glaucoma are also discussed, as well as the need for further research to better understand the mechanisms of complement-mediated retinal damage in these disease states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in pre-clinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the anti-microbial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC anti-microbial effect in the in vivo model of E.coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct co-culture of MSC with monocyte-derived macrophages (MDMs) enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through TNT-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the anti-microbial effect of MSC in vivo.

Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the anti-microbial effect of MSC in ARDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A génese de um cancro está dependente da acumulação de mutações genéticas que dão origem a instabilidade genómica, que por sua vez resulta na proliferação descontrolada. Para prevenir a acumulação destas mutações, as células têm mecanismos de controlo (checkpoints) que suspendem o ciclo celular e accionam as vias de reparação do ADN. Estes eventos são muitas vezes regulados por dinâmicas de (des)fosforilação de proteínas. As proteínas fosfatases (PPs), enzimas responsáveis pela remoção do grupo fosfato de resíduos fosforilados, desempenham funções cruciais na regulação de muitos mecanismos celulares. Enquanto que no início do projecto as cinases envolvidas no checkpoint da replicação estavam bem estabelecidas, as PPs envolvidas não eram conhecidas. A Chk1, um componente da maquinaria do checkpoint da replicação, é exemplo dessa regulação por (des)fosforilação, como sejam nos resíduos Ser317 e Ser345. Assim, como primeira abordagem para determinar quais os grupos de PPs envolvidos na regulação do checkpoint da replicação, decidimos investigar o seu papel na regulação da fosforilação da Chk1. A primeira conclusão é que a desfosforilação da Chk1 ao longo do tempo, tanto in vivo como in vitro, ocorre com uma dinâmica bi-fásica. Em segundo, a abordagem in vitro sugere que as famílias PP1, PP2A e PP2C estão envolvidas na desfosforilação da Chk1. Uma vez que a família PP2A foi a que mostrou a maior acção nesta reacção, decidimos investigar outros membros da família in vivo, primeiro com uma abordagem geral (tratando com OA ou sobreexpressando a PME-1), e depois com o knockdown específico da PP4 e PP6 (através de siRNA). Os resultados mostram que a inibição das PPs afectam tanto a desfosforilação como o estado de activação da Chk1 em resposta a tratamento com Hidroxiureia (HU). Todas as PPs testadas in vivo pareceram ser capazes de regular, a níveis diferentes, tanto a fosforilação como a desfosforilação da Chk1. A função das PPs foi também investigada ao nível: da regulação do disparo das origens de replicação, e da recuperação da suspensão da replicação, induzida pela HU. No último caso, os dados indicam que na situação simultânea de knockdown da PP4 com tratamento de HU, há um atraso do ciclo celular na resolução da transição de G2/M. No ensaio de replicação por pulse-chase, os resultamos mostram que tanto o tratamento com OA, como a sobre-expressão de I-2 ou PME-1, atrasam a cronologia do disparo programado das origens de replicação. No entanto, nenhum dos tratamentos efectuados parece desregular o início do checkpoint da replicação. Um rastreio de 2-híbrido de levedura com uma biblioteca de cDNA de testículo humano foi realizado, usando a Chk1 como isco, no sentido de descobrir novos interactores e definir novas possíveis funções para a Chk1 no contexto da meiose. Com base nos resultados do rastreio, duas novas funções são sugeridas: a interacção com a GAGE12 sugere uma função na recombinação genómica/vigilância do genoma durante a meiose, e as interacções com a EEF1α1 e a RPS5 sugerem uma função na regulação da síntese proteíca. Estas experiências fornecem um visão geral para a compreensão da diversidade de funções das proteínas fosfatases envolvidas no checkpoint da replicação, bem como, abre novos caminhos para o desenvolvimento de novas drogas para o tratamento do cancro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As fosfatidiletanolaminas constituem a segunda classe de fosfolípidos mais abundantes nos organismos. Elas estão presentes nas membranas biológicas e nas lipoproteínas. As alterações estruturais dos fosfolípidos, ocorrem devido ao stress oxidativo e podem manisfestar-se em alterações das suas propriedades e funções. Já são conhecidas algumas condições fisiopatológicas, nas quais os fosfolípidos oxidados estão envolvidos, por exemplo sinalização celular, resposta imunitária, apoptose e doenças relacionadas com o envelhecimento. Por esse motivo, o interesse no estudo dos fosfolípidos oxidados e suas funções tem crescido nos últimos anos. Contudo, a maioria dos estudos realizados, focam a oxidação das fosfatidilcolinas, tendo sido dedicada pouca atenção a outras classes de fosfolipídos, como as fosfatidiletanolaminas. As fosfatidiletanolaminas, podem ainda sofrer outras modificações, devido ao grupo amina livre presente na cabeça polar, como por exemplo a glicação. As fosfatidiletanolaminas glicadas já foram detectadas em condições de hiperglicemia, em pacientes diabéticos, e tem correlação com a hemoglobina glicada. Sabe-se que a glicação de biomoléculas, pode aumentar as modificações oxidativas, que por sua vez, podem ser responsáveis pelo estado inflamatório, existente na diabetes mellitus. Tanto o stress oxidativo, como a inflamação estão relacionados com a diabetes e as suas complicações. A espectrometria de massa tem sido utilizada como uma importante tecnologia na detecção e caracterização de modificações oxidativas de fosfolípidos. Assim, neste trabalho pretendeu-se estudar as modificações oxidativas induzidas em fosfatidiletanolaminas glicadas, e os seus efeitos biológicos nos monócitos e células dendríticas do sangue periférico. Pretendeu-se ainda, estudar as alterações que ocorreram nas espécies de fosfatidiletanolaminas do fígado de ratos diabéticos. Os resultados obtidos permitiram identificar vários produtos de oxidação de fosfatidiletanolaminas glicadas, nomeadamente novos produtos formados pela oxidação da cabeça polar glicada. A oxidação na cabeça polar glicada foi, ainda, confirmada pela realização de experiências com spin traps combinadas com espetrometria de massa. Posteriormente, as fosfatidiletanolaminas oxidadas, glicadas e glicoxidadas demonstraram ter efeitos pró-inflamatórios, confirmados pelo aumento da estimulação monócitos e de células dendríticas, expresso no aumento do número de células produtoras de citocinas em comparação com o estado basal. As diferentes modificações de fosfatidiletanolaminas induziram estímulos distintos nos dois tipos de células. Sendo as fosfatidiletanolaminas glicadas e as glicoxidadas, os compostos que induziram um maior estímulo. Estes resultados sugeriram que as fosfatidiletanolaminas glicadas e as glicoxidadas podem estar associadas com o estado inflamatório que decorre da hiperglicemia crónica. Ainda, a avaliação do perfil lipídico de extratos de fígado de ratos diabéticos demonstrou que a hiperglicemia induz inúmeras alterações das espécies de fosfatidiletanolaminas e das espécies de outras classes de fosfolípidos, em simultâneo com sinais de lesão hepática. Em conclusão, este trabalho demonstra a relação existente entre, a hiperglicémia, o stress oxidativo, a glicação e oxidação de fosfatidiletanolaminas e ainda a inflamação e compliações diabéticas. Portanto a contribuição da lipidómica é importante para compreender os efeitos prejudiciais da hiperglicemia não controlada, e por isso, merece ser mais explorado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental tobacco smoke (ETS) is recognized as an occupational hazard in the hospitality industry. Although Portuguese legislation banned smoking in most indoor public spaces, it is still allowed in some restaurants/bars, representing a potential risk to the workers’ health, particularly for chronic respiratory diseases. The aims of this work were to characterize biomarkers of early genetic effects and to disclose proteomic signatures associated to occupational exposure to ETS and with potential to predict respiratory diseases development. A detailed lifestyle survey and clinical evaluation (including spirometry) were performed in 81 workers from Lisbon restaurants. ETS exposure was assessed through the level of PM 2.5 in indoor air and the urinary level of cotinine. The plasma samples were immunodepleted and analysed by 2D-SDSPAGE followed by in-gel digestion and LC-MS/MS. DNA lesions and chromosome damage were analysed innlymphocytes and in exfoliated buccal cells from 19 cigarette smokers, 29 involuntary smokers, and 33 non-smokers not exposed to tobacco smoke. Also, the DNA repair capacity was evaluated using an ex vivo challenge comet assay with an alkylating agent (EMS). All workers were considered healthy and recorded normal lung function. Interestingly, following 2D-DIGE-MS (MALDI-TOF/TOF), 61 plasma proteins were found differentially expressed in ETS-exposed subjects, including 38 involved in metabolism, acute-phase respiratory inflammation, and immune or vascular functions. On the other hand, the involuntary smokers showed neither an increased level of DNA/chromosome damage on lymphocytes nor an increased number of micronuclei in buccal cells, when compared to non-exposed non-smokers. Noteworthy, lymphocytes challenge with EMS resulted in a significantly lower level of DNA breaks in ETS-exposed as compared to non-exposed workers (P<0.0001) suggestive of an adaptive response elicited by the previous exposure to low levels of ETS. Overall, changes in proteome may be promising early biomarkers of exposure to ETS. Likewise, alterations of the DNA repair competence observed upon ETS exposure deserves to be further understood. Work supported by Fundação Calouste Gulbenkian, ACSS and FCT/Polyannual Funding Program.