904 resultados para modeling of arrival processes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the existence of a velocity slip and temperature jump on the solid walls, the heat transfer in microchannels significantly differs from the one in the macroscale. In our research, we have focused on the pressure driven gas flows in a simple finite microchannel geometry, with an entrance and an outlet, for low Reynolds (Re<200) and low Knudsen (Kn<0.01) numbers. For such a regime, the slip induced phenomena are strongly connected with the viscous effects. As a result, heat transfer is also significantly altered. For the optimization of flow conditions, we have investigated various temperature gradient configurations, additionally changing Reynolds and Knudsen numbers. The entrance effects, slip flow, and temperature jump lead to complex relations between flow behavior and heat transfer. We have shown that slip effects are generally insignificant for flow behavior. However, two configuration setups (hot wall cold gas and cold wall hot gas) are affected by slip in distinguishably different ways. For the first one, which concerns turbomachinery, the mass flow rate can increase by about 1% in relation to the no-slip case, depending on the wall-gas temperature difference. Heat transfer is more significantly altered. The Nusselt number between slip and no-slip cases at the outlet of the microchannel is increased by about 10%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores system performance for reconfigurable distributed systems and provides an analytical model for determining throughput of theoretical systems based on the OpenSPARC FPGA Board and the SIRC Communication Framework. This model was developed by studying a small set of variables that together determine a system¿s throughput. The importance of this model is in assisting system designers to make decisions as to whether or not to commit to designing a reconfigurable distributed system based on the estimated performance and hardware costs. Because custom hardware design and distributed system design are both time consuming and costly, it is important for designers to make decisions regarding system feasibility early in the development cycle. Based on experimental data the model presented in this paper shows a close fit with less than 10% experimental error on average. The model is limited to a certain range of problems, but it can still be used given those limitations and also provides a foundation for further development of modeling reconfigurable distributed systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the impact of red blood cell (RBC) Life-spans in some disease areas such as diabetes or anemia of chronic kidney disease, there is no consensus on how to quantitatively best describe the process. Several models have been proposed to explain the elimination process of RBCs: random destruction process, homogeneous life-span model, or a series of 4-transit compartment model. The aim of this work was to explore the different models that have been proposed in literature, and modifications to those. The impact of choosing the right model on future outcomes prediction--in the above mentioned areas--was also investigated. Both data from indirect (clinical data) and direct life-span measurement (biotin-labeled data) methods were analyzed using non-linear mixed effects models. Analysis showed that: (1) predictions from non-steady state data will depend on the RBC model chosen; (2) the transit compartment model, which considers variation in life-span in the RBC population, better describes RBC survival data than the random destruction or homogenous life-span models; and (3) the additional incorporation of random destruction patterns, although improving the description of the RBC survival data, does not appear to provide a marked improvement when describing clinical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pumped-storage (PS) systems are used to store electric energy as potential energy for release during peak demand. We investigate the impacts of a planned 1000 MW PS scheme connecting Lago Bianco with Lago di Poschiavo (Switzerland) on temperature and particle mass concentration in both basins. The upper (turbid) basin is a reservoir receiving large amounts of fine particles from the partially glaciated watershed, while the lower basin is a much clearer natural lake. Stratification, temperature and particle concentrations in the two basins were simulated with and without PS for four different hydrological conditions and 27 years of meteorological forcing using the software CE-QUAL-W2. The simulations showed that the PS operations lead to an increase in temperature in both basins during most of the year. The increase is most pronounced (up to 4°C) in the upper hypolimnion of the natural lake toward the end of summer stratification and is partially due to frictional losses in the penstocks, pumps and turbines. The remainder of the warming is from intense coupling to the atmosphere while water resides in the shallower upper reservoir. These impacts are most pronounced during warm and dry years, when the upper reservoir is strongly heated and the effects are least concealed by floods. The exchange of water between the two basins relocates particles from the upper reservoir to the lower lake, where they accumulate during summer in the upper hypolimnion (10 to 20 mg L−1) but also to some extent decrease light availability in the trophic surface layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional, time dependent numerical simulations of healthy and pathological conditions in a model kidney were performed. Blood flow in a kidney is not commonly investigated by computational approach, in contrast for example, to the flow in a heart. The flow in a kidney is characterized by relatively small Reynolds number (100 < Re < 0.01-laminar regime). The presented results give insight into the structure of such flow, which is hard to measure in vivo. The simulations have suggested that venous thrombosis is more likely than arterial thrombosis-higher shear rate observed. The obtained maximum velocity, as a result of the simulations, agrees with the observed in vivo measurements. The time dependent simulations show separation regimes present in the vicinity of the maximum pressure value. The pathological constriction introduced to the arterial geometry leads to the changes in separation structures. The constriction of a single vessel affects flow in the whole kidney. Pathology results in different flow rate values in healthy and affected branches, as well as, different pulsate cycle characteristic for the whole system.