971 resultados para methyl CpG binding protein 2
Resumo:
Alpha-D-mannopyranosides are potent FimH antagonists, which inhibit the adhesion of Escherichia coli to highly mannosylated uroplakin Ia on the urothelium and therefore offer an efficient therapeutic opportunity for the treatment and prevention of urinary tract infection. For the evaluation of the therapeutic potential of FimH antagonists, their effect on the disaggregation of E. coli from Candida albicans and guinea pig erythrocytes (GPE) was studied. The mannose-specific binding of E. coli to yeast cells and erythrocytes is mediated by type 1 pili and can be monitored by aggregometry. Maximal aggregation of C. albicans or GPE to E. coli is reached after 600 s. Then the FimH antagonist was added and disaggregation determined by light transmission over a period of 1400 s. A FimH-deleted mutant of E. coli, which does not induce any aggregation, was used in a control experiment. The activities of FimH antagonists are expressed as IC(50)s, the half maximal inhibitory concentration of the disaggregation potential. n-Heptyl alpha-D-mannopyranoside (1) was used as a reference compound and exhibits an IC(50) of 77.14 microM , whereas methyl alpha-D-mannopyranoside (2) does not lead to any disaggregation at concentrations up to 800 microM. o-Chloro-p-[N-(2-ethoxy-3,4-dioxocyclobut-1-enyl)amino]phenyl alpha-D-mannopyranoside (3) shows a 90-fold and 2-chloro-4-nitrophenyl alpha-D-mannopyranoside (4) a 6-fold increased affinity compared to 1. Finally, 4-nitrophenyl alpha-D-mannopyranoside (5) exhibits an activity similar to 1. As negative control, D-galactose (6) was used. The standardized aggregation assay generates concentration-dependent, reproducible data allowing the evaluation of FimH antagonists according to their potency to inhibit E. coli adherence and can therefore be employed to select candidates for experimental and clinical studies for treatment and prevention of urinary tract infections.
Resumo:
Many DNA helicases utilise the energy derived from nucleoside triphosphate hydrolysis to fuel their actions as molecular motors in a variety of biological processes. In association with RuvA, the E. coli RuvB protein (a hexameric ring helicase), promotes the branch migration of Holliday junctions during genetic recombination and DNA repair. To analyse the relationship between ATP-dependent DNA helicase activity and branch migration, a site-directed mutation was introduced into the helicase II motif of RuvB. Over-expression of RuvBD113N in wild-type E. coli resulted in a dominant negative UVs phenotype. The biochemical properties of RuvBD113N were examined and compared with wild-type RuvB in vitro. The single amino acid substitution resulted in major alterations to the biochemical activities of RuvB, such that RuvBD113N was defective in DNA binding and ATP hydrolysis, while retaining the ability to form hexameric rings and interact with RuvA. RuvBD113N formed heterohexamers with wild-type RuvB, and could inhibit RuvB function by affecting its ability to bind DNA. However, heterohexamers exhibited an ability to promote branch migration in vitro indicating that not all subunits of the ring need to be catalytically competent.
Resumo:
Under iron limitation, the opportunistic human pathogen Pseudomonas aeruginosa produces the siderophore pyochelin. When secreted into the extracellular environment, pyochelin complexes ferric ions and delivers them, via the outer membrane receptor FptA, to the bacterial cytoplasm. Extracellular pyochelin also acts as a signalling molecule, inducing the expression of pyochelin biosynthesis and uptake genes by a mechanism involving the AraC-type regulator PchR. We have identified a 32 bp conserved sequence element (PchR-box) in promoter regions of pyochelin-controlled genes and we show that the PchR-box in the pchR-pchDCBA intergenic region is essential for the induction of the pyochelin biosynthetic operon pchDCBA and the repression of the divergently transcribed pchR gene. PchR was purified as a fusion with maltose-binding protein (MBP). Mobility shift assays demonstrated specific binding of MBP-PchR to the PchR-box in the presence, but not in the absence of pyochelin and iron. PchR-box mutations that interfered with pyochelin-dependent regulation in vivo, also affected pyochelin-dependent PchR-box recognition in vitro. We conclude that pyochelin, probably in its iron-loaded state, is the intracellular effector required for PchR-mediated regulation. The fact that extracellular pyochelin triggers this regulation suggests that the siderophore can enter the cytoplasm.
Resumo:
Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor kappaB (NF-kappaB) signaling, and sensitize cells to tumor necrosis factor alpha (TNFalpha). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1-Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1-TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-kappaB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFalpha-induced death occurs. TWEAK-induced loss of the cIAP1-TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFalpha-induced death, whereas primary cells remain resistant. Conversely, cIAP1-TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFalpha sensitization. Lysosomal degradation of cIAP1-TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.
Resumo:
S100A1 is a Ca(2+)-binding protein and predominantly expressed in the heart. We have generated a mouse line of S100A1 deficiency by gene trap mutagenesis to investigate the impact of S100A1 ablation on heart function. Electrocardiogram recordings revealed that after beta-adrenergic stimulation S100A1-deficient mice had prolonged QT, QTc and ST intervals and intraventricular conduction disturbances reminiscent of 2 : 1 bundle branch block. In order to identify genes affected by the loss of S100A1, we profiled the mutant and wild type cardiac transcriptomes by gene array analysis. The expression of several genes functioning to the electrical activity of the heart were found to be significantly altered. Although the default prediction would be that mRNA and protein levels are highly correlated, comprehensive immunoblot analyses of salient up- or down-regulated candidate genes of any cellular network revealed no significant changes on protein level. Taken together, we found that S100A1 deficiency results in cardiac repolarization delay and alternating ventricular conduction defects in response to sympathetic activation accompanied by a significantly different transcriptional regulation.
Resumo:
Background and objectives: Interleukin-18 (IL-18) is a pleiotropic cytokine involved in rheumatoid arthritis (RA) pathogenesis. This studywas carried out to evaluate the efficicacy of interleukin-18 binding protein (IL-18BP) gene therapy in the rat adjuvant-induced arthritis (AIA) model and to decipher the mechanisms by which IL-18BP delivery lessens bone destruction. Materials and methods: Arthritis was induced in female Lewis rat by Mycobacterium butyricum and the mRNA expression of IL-18 and IL-18BP was determined in the joints. In a preventative study, rats were divided into an adenovirus producing IL-18BP-Fc (AdmIL-18BP-Fc) group (n=8) and an adenovirus producing green fluorescent protein (AdGFP) group (n=7). On day 8 after AIA induction, adenoviruses were injected. Clinical parameters were assessed. At day 18, during maximal arthritis, the rats were euthanized, ankles were collected, and X-rays were performed. mRNA and protein were extracted from joints for analyses by qRT-PCR, multiplex, Western blot, and zymography. Results: We observed a decrease in the [IL-18BP/IL-18] ratio from day 7 to day 45. Administration of AdmIL-18BPd-Fc decreased clinical parameters and prevented bone and joint destruction compared to AdGFP administration. IL-18BP delivery reduced the metalloproteinase 9 (MMP-9) levels by 33% (at protein level (Fig. 1B) and functional level (Fig. 1C) and the tartrate-resistant acid phosphatase (TRAP) level by 44% (Fig. 1D) in the joint homogenates from AdmIL-18BPd-Fc compared to AdGFP treated rats.However, no variationwas observed forMMP-2 at the protein level (Fig.1A) and functional level (Fig. 1C). Conclusions: In rat AIA, a decrease in the [IL-18BP/ IL-18] ratio was observed. IL-18BP delivery prevented joint and bone destruction by downregulating MMP-9 and TRAP, suggesting a potential benefit of a similar therapy in RA.
Resumo:
Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.
Resumo:
Homologous recombination provides a major pathway for the repair of DNA double-strand breaks in mammalian cells. Defects in homologous recombination can lead to high levels of chromosomal translocations or deletions, which may promote cell transformation and cancer development. A key component of this process is RAD51. In comparison to RecA, the bacterial homologue, human RAD51 protein exhibits low-level strand-exchange activity in vitro. This activity can, however, be stimulated by the presence of high salt. Here, we have investigated the mechanistic basis for this stimulation. We show that high ionic strength favours the co-aggregation of RAD51-single-stranded DNA (ssDNA) nucleoprotein filaments with naked duplex DNA, to form a complex in which the search for homologous sequences takes place. High ionic strength allows differential binding of RAD51 to ssDNA and double-stranded DNA (dsDNA), such that ssDNA-RAD51 interactions are unaffected, whereas those between RAD51 and dsDNA are destabilized. Most importantly, high salt induces a conformational change in RAD51, leading to the formation of extended nucleoprotein filaments on ssDNA. These extended filaments mimic the active form of the Escherichia coli RecA-ssDNA filament that exhibits efficient strand-exchange activity.
Resumo:
Résumé Le staphylocoque doré est un pathogène responsable d'une grande variété de maladies chez l'être humain. Il est extrêmement bien équipé de facteurs de virulence, dont les adhésines. Jusqu'à présent, 21 protéines liant des composants de tissus de l'hôte ("microbial surface components reacting with adherence matrix molecules, MSCRAMM") ont été identifiées, par exemple le "clumping factor" A (CIfA) ou la "fibronectin-binding protein" A (FnBPA). Néanmoins, pour la plupart de ces protéines, leur rôle dans la pathogénie des infections à staphylocoque doré reste à être élucidé. Le but de cette thèse est de contribuer à ce processus. Premièrement, les "MSCRAMM" CIfA, CIfB, FnBPA, FnBPB, Cna, SpA, Pls, SdrC, SdrD, SdrE, SasD, SasE, SasF, SasG, Sasl, SasJ et SasK ont été exprimés dans une bactérie substitut, Lactococcus lactis, et testés pour leurs propriétés adhésives et leur pathogénicité dans un modèle d'endocardite expérimentale (voir chapitre 1). Cette technique a préalablement été utilisée avec succès et a l'avantage d'éviter le contexte complexe des redondances et systèmes de régulations propres au staphylocoque doré. Les résultats montrent que, de tous les facteurs de virulence testés, seuls CIfA et FnBPA sont d'importance primordiale dans le développement d'endocardite expérimentale. En ce qui concerne l'internalisation dans les cellules endothéliales, seulement FnPBA et FnBPB en sont capables. En outre, l'adhérence à chacun des ligands testés (fibrinogène, fibronectine, kératine, élastine, collagène, et les caillots de fibrine et plaquettes) est très spécifique et est médiée par une ou plusieures adhésines provenant du staphylocoque doré. Par conséquence, ces protéines pourraient représenter des cibles potentielles pour de futures thérapies anti-adhésives contre le staphylocoque doré. Deuxièmement, l'expression des facteurs de virulence décrits dans le chapitre 1 par les souches recombinantes de lactocoques a été vérifiée par une nouvelle méthode utilisant la spectrométrie de masse (voir chapitre 2). L'expression de toutes ces protéines par les souches recombinantes a pu être confirmée. Cette méthode pourrait être de grande valeur dans la vérification de la présence de protéines quelconques dans toutes sortes d'applications. Troisièmement, deux facteurs de virulence du staphylocoque, CIfA et une forme tronquée de FnBPA, ont été exprimés de façon simultanée dans une souche recombinante de lactocoque (voir chapitre 3}. Contrairement à une souche exprimant la FnBPA entière, une souche exprimant la forme tronquée de FnPBA, qui ne contient plus le domaine capable de lier le fibrinogène, perd complètement sa capacité d'infecter dans le modèle d'endocardite expérimentale. Par contre, il est montré que, en cas de complémentation de la forme tronquée de FnPBA avec le domaine de liaison au fibrinogène de CIfA dans la souche double recombinante, le phénotype intégral de FnBPA est récupéré. En conséquence, les facteurs de virulence sont capables de coopérer dans le but de la pathogénie des infections à staphylocoque doré. Summary Staphylococcus aureus is a human pathogen causing a wide variety of disease. It is extremely well equipped with both secreted and surface-attached virulence factors, which can act as adhesins to host tissues. In total, twenty-one microbial surface components reacting with adherence matrix molecules (MSCRAMMs) have been identified, so far. These include well-characterized adhesins such as clumping factor A (CIfA) or fibronectin-binding protein A (FnBPA). However, for most of them their potential role in the pathogenesis of staphylococcal infections remains to be elucidated. This has been attempted in this thesis work. Firstly, the staphylococcal MSCRAMMs CIfA, CIfB, FnBPA, FnBPB, Cna, SpA, Pls, SdrC, SdrD, SdrE, SasD, SasE, SasF, SasG, Sasl, SasJ, and SasK have been expressed in a surrogate bacterium, Lactococcus lactis, and tested for their in vitro adherence properties and their pathogenicity in the rat model of experimental endocarditis (see chapter 1). This model has successfully been used previously, and has the advantage of bypassing the complex S. aureus background of redundancies and differential regulation. Here, it is shown that of the seventeen tested potential virulence factors, only CIfA and FnBPA are critical for the pathogenesis of experimental endocarditis in rats, while internalization into bovine endothelial cells is mediated exclusively by FnBPA and FnBPB. In addition, the adherence to specific host ligands (fibrinogen, fibronectin, keratin, elastin, collagen, and fibrin-platelet clots) is highly specific and mediated by one or few staphylococcal adhesins, respectively. Thus, these surface proteins may represent potential targets for an anti-adhesive strategy against S. aureus infections. Secondly, the expression of the staphylococcal proteins by L. lactis recombinants described in chapter 1 was tested by a novel method using mass spectrometry (see chapter 2). The expression of all the staphylococcal proteins by the respective recombinant lactococcal strain could be confirmed. This method may prove to be of great value in the confirmation of the presence of any given protein in various experimental settings. Thirdly, two staphylococcal virulence factors, CIfA and a truncated form of FnBPA, were expressed simultaneously in one recombinant lactococcal strain (see chapter 3). In contrast to a recombinant strain expressing full-length FnPBA, a recombinant strain expressing a truncated FnPBA, lacking the domain capable of binding fibrinogen, completely lost infectivity in experimental endocarditis. However, it is shown that the complementation of the truncated form of FnBPA with the fibrinogenbinding domain of CIfA in a double recombinant strain results in the recovery of the complete phenotype of full-length FnBPA. Thus, virulence factors can cooperate in the pathogenesis of staphylococcal infections.
Resumo:
We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.
Resumo:
Activation of cultured hepatic stellate cells correlated with an enhanced expression of proteins involved in uptake and storage of fatty acids (FA translocase CD36, Acyl-CoA synthetase 2) and retinol (cellular retinol binding protein type I, CRBP-I; lecithin:retinol acyltransferases, LRAT). The increased expression of CRBP-I and LRAT during hepatic stellate cells activation, both involved in retinol esterification, was in contrast with the simultaneous depletion of their typical lipid-vitamin A (vitA) reserves. Since hepatic stellate cells express high levels of peroxisome proliferator activated receptor beta (PPARbeta), which become further induced during transition into the activated phenotype, we investigated the potential role of PPARbeta in the regulation of these changes. Administration of L165041, a PPARbeta-specific agonist, further induced the expression of CD36, B-FABP, CRBP-I, and LRAT, whereas their expression was inhibited by antisense PPARbeta mRNA. PPARbeta-RXR dimers bound to CRBP-I promoter sequences. Our observations suggest that PPARbeta regulates the expression of these genes, and thus could play an important role in vitA storage. In vivo, we observed a striking association between the enhanced expression of PPARbeta and CRBP-I in activated myofibroblast-like hepatic stellate cells and the manifestation of vitA autofluorescent droplets in the fibrotic septa after injury with CCl4 or CCl4 in combination with retinol.
Resumo:
Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.
Resumo:
The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity, mitochondrial antiviral signaling protein (MAVS) and TRIF, a phosphatase involved in growth factor signaling, T-cell protein tyrosine phosphatase (TC-PTP), and the E3 ubiquitin ligase component UV-damaged DNA-binding protein 1 (DDB1). Here we explored quantitative proteomics to identify novel cellular substrates of the NS3-4A protease. Cell lines inducibly expressing the NS3-4A protease were analyzed by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. This approach identified the membrane-associated peroxidase GPx8 as a bona fide cellular substrate of the HCV NS3-4A protease. Cleavage by NS3-4A occurs at Cys 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic HCV. Overexpression and RNA silencing studies revealed that GPx8 is involved in viral particle production but not in HCV entry or RNA replication. Conclusion: We provide proof-of-concept for the use of quantitative proteomics to identify cellular substrates of a viral protease and describe GPx8 as a novel proviral host factor targeted by the HCV NS3-4A protease. (Hepatology 2014;59:423-433).
Resumo:
S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.
Resumo:
The roles of peroxisome proliferator-activated receptors (PPARs) and CCAAT/enhancer-binding proteins (C/EBPs) in keratinocyte and sebocyte differentiation suggest that both families of transcription factors closely interact in the skin. Initial characterization of the mouse PPARbeta promoter revealed an AP-1 site that is crucial for the regulation of PPARbeta expression in response to inflammatory cytokines in the skin. We now present evidence for a novel regulatory mechanism of the expression of the PPARbeta gene by which two members of the C/EBP family of transcription factors inhibit its basal promoter activity in mouse keratinocytes. We first demonstrate that C/EBPalpha and C/EBPbeta, but not C/EBPdelta, inhibit the expression of PPARbeta through the recruitment of a transcriptional repressor complex containing HDAC-1 to a specific C/EBP binding site on the PPARbeta promoter. Consistent with this repression, the expression patterns of PPARbeta and C/EBPs are mutually exclusive in keratinocytes of the interfollicular epidermis and hair follicles in mouse developing skin. This work reveals the importance of the regulatory interplay between PPARbeta and C/EBP transcription factors in the control of proliferation and differentiation in this organ. Such insights are crucial for the understanding of the molecular control regulating the balance between proliferation and differentiation in many cell types including keratinocytes.