985 resultados para mental structures
Resumo:
Close-packed helices with mixed hydrogen bond directionality are unprecedented in the structural chemistry of alpha-polypeptides. While NMR studies in solution state provide strong evidence for the occurrence of mixed helices in (beta beta)(n) and (alpha beta)(n) sequences, limited information is currently available in crystals. The peptide structures presented show the occurrence of C-11/C-9 helices in (alpha beta)(n) peptides. Transitions between C-11 and C-11/C-9 helices are observed upon varying the alpha-amino acid residue.
Resumo:
Peripherally heterofunctionalized hyperbranched polymers (HBPs) undergo immiscibility-driven self-segregation of the outer segments to form Janus molecular entities (Macromolecules 2012, 45, 2348). In HBPs prepared via AB2 type self-condensation, single-step peripheral heterofunctionalization would lead to random distribution of the two types of terminal units, namely, homofunctionalized (homo-T) and heterofunctionalized (hetero-T) termini. Here, we examine the role of such hetero-T units on the self-segregation of heterofunctionalized pseudodendritic hyperbranched polydithioacetals. Three different heterofunctionalized HB dithioacetals bearing roughly 50 mol % each of docsyl (C-22) and MPEG-350 chains at the periphery were prepared: one of them carried a statistical distribution of homo-T and hetero-T units, and the other carried only two types of homo-T (-TR1R1 and -TR2R2) termini, whereas the third carried largely hetero-T (-TR1R2) termini. Careful examination of DSC and SAXS data reveals that the self-segregation is most effective in HBPs devoid of hetero-T units; interestingly, however, it also showed that randomly heterofunctionalized HBPs self-segregated nearly as effectively.
Resumo:
The current manuscript describes conformational analysis of 15-membered cyclic tetrapeptides (CTPs), with alpha 3 delta architecture, containing sugar amino acids (SAA) having variation in the stereocenter at C5 carbon. Conformational analyses of both the series, in protected and deprotected forms, were carried out in DMSO-d(6) using various NMR techniques, supported by restrained MD calculations. It was intriguing to notice that the alpha 3 delta macrocycles got stabilized by both 10-membered beta-turn as well as a seven-membered gamma-turn, fused within the same macrocycle. The presence of fused sub-structures within a 15-membered macrocycle is rare to see. Also, the stereocenter variation at C5 did not affect the fused turn structures and exhibited similar conformations in both the series. The design becomes highly advantageous as fused reverse turn structures are occurring in the cyclic structure with minimalistic size macrocycle and this can be applied to develop suitable pharmacophores in the drug development process. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Identification and analysis of nonbonded interactions within a molecule and with the surrounding molecules are an essential part of structural studies, given the importance of these interactions in defining the structure and function of any supramolecular entity. MolBridge is an easy to use algorithm based purely on geometric criteria that can identify all possible nonbonded interactions, such as hydrogen bond, halogen bond, cation-pi, pi-pi and van der Waals, in small molecules as well as biomolecules. The user can either upload three-dimensional coordinate files or enter the molecular ID corresponding to the relevant database. The program is available in a standalone form and as an interactive web server with Jmol and JME incorporated into it. The program is freely downloadable and the web server version is also available at http://nucleix.mbu.iisc.ernet.in/molbridge/index.php.
Resumo:
Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.
Resumo:
Crystal structures of a series of isomers of chlorofluorobenzene, bromofluorobenzene and iodofluorobenzene, all of which are liquids under ambient conditions, are determined by a technique of in situ cryocrystallography. These simple dihalo substituted benzenes provide clear insights into subtle interplay of packing interactions preferred by fluorine and heavier halogens for example, C-H center dot center dot center dot X hydrogen bonds vs. X center dot center dot center dot X halogen bonds (X=F, Cl, Br, I). The interaction patterns noted here are purely characteristic of halogens, having not been influenced by other stronger interactions. Variability of principal supramolecular synthons among the isomers highlights the importance of molecular shape and relative position of interacting atoms while preserving the basic intermolecular bonds. Mutually exclusive occurrence of homo (I center dot center dot center dot I) and hetero (I center dot center dot center dot F) halogen bonds in polymorphs of 4-iodofluorobenzene questions the robustness and reliability of these interactions.
Resumo:
We report the formation of dendritic hierarchical structures of alpha-Fe2O3 and nanostructures of Fe2O3 by the simple liquid-liquid interface method. The morphology of thin films determined by high-resolution scanning electron microscopy shows nanorods, nanosheets and dendritic Fe2O3. The identification of phases of iron oxide structures is carried out by using XRD and XPS studies. XRD and XPS measurements point out the highly crystalline dendritic alpha-Fe2O3 phase and the mixed phase of alpha- and gamma-Fe2O3 nanostructures. The magnetic measurement also suggests the presence of a mixed phase in the sample grown for 72 hours.
Resumo:
The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fractal dimension based damage detection method is studied for a composite structure with random material properties. A composite plate with localized matrix crack is considered. Matrix cracks are often seen as the initial damage mechanism in composites. Fractal dimension based method is applied to the static deformation curve of the structure to detect localized damage. Static deflection of a cantilevered composite plate under uniform loading is calculated using the finite element method. Composite material shows spatially varying random material properties because of complex manufacturing processes. Spatial variation of material property is represented as a two dimensional homogeneous Gaussian random field. Karhunen-Loeve (KL) expansion is used to generate a random field. The robustness of fractal dimension based damage detection methods is studied considering the composite plate with spatial variation in material properties.
Resumo:
Using Generalized Gradient Approximation (GGA) and meta-GGA density functional methods, structures, binding energies and harmonic vibrational frequencies for the clusters O-4(+), O-6(+), O-8(+) and O-10(+) have been calculated. The stable structures of O-4(+), O-6(+), O-8(+) and O-10(+) have point groups D-2h, D-3h, D-4h, and D-5h optimized on the quartet, sextet, octet and dectet potential energy surfaces, respectively. Rectangular (D-2h) O-4(+) has been found to be more stable compared to trans-planar (C-2h) on the quartet potential energy surface. Cyclic structure (D-3h) of CA cluster ion has been calculated to be more stable than other structures. Binding energy (B.E.) of the cyclic O-6(+) is in good agreement with experimental measurement. The zero-point corrected B.E. of O-8(+) with D4h symmetry on the octet potential energy surface and zero-point corrected B.E. of O-10(+) with D-5h symmetry on the dectet potential energy surface are also in good agreement with experimental values. The B.E. value for O-4(+) is close to the experimental value when single point energy is calculated by Brueckner coupled-cluster method, BD(T). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Reinforced concrete (RC) beams of span 3 m were tested under incremental cyclic load at different loading rates and simultaneously during the fracture process in the RC beams acoustic emissions (AE) were recorded. An attempt has been made to study the Kaiser effect as a measure of damage in RC beams. It was observed that RC beams made with high strength concrete under incremental cyclic loading showed an obvious Kaiser effect before the failure load. The results may be useful to study the damage in concrete structures and provide a reference for the application of Kaiser effect in engineering practice. (C) 2014 Politechnika Wroclawska. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.
Resumo:
A comprehensive design flow is proposed for the design of Micro Electro Mechanical Systems that are fabricated using SOIMUMPs process. Many of the designers typically do not model the temperature dependency of electrical conductivity, thermal conductivity and convection coefficient, as it is very cumbersome to create/incorporate the same in the existing FEM simulators. Capturing these dependencies is very critical particularly for structures that are electrically actuated. Lookup tables that capture the temperature dependency of electrical conductivity, thermal conductivity and convection coefficient are created. These look up tables are taken as inputs for a commercially available FEM simulator to model the semiconductor behavior. It is demonstrated that when temperature dependency for all the above mentioned parameters is not captured, then the error in estimation of the maximum temperature (for a given structure) could be as high as 30%. Error in the estimated resistance value under the same conditions is as high as 40%. When temperature dependency of the above mentioned parameters is considered then error w.r.t the measured values is less than 5%. It is evident that error in temperature estimates leads to erroneous results from mechanical simulations as well.
Resumo:
The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an ``energy-like measure'' in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics problems, variants of the trapezoidal rule that incorporate ``high-frequency'' dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid finite element framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacement-based and hybrid approaches against analytical solutions.
Resumo:
Secondary-structure elements (SSEs) play an important role in the folding of proteins. Identification of SSEs in proteins is a common problem in structural biology. A new method, ASSP (Assignment of Secondary Structure in Proteins), using only the path traversed by the C atoms has been developed. The algorithm is based on the premise that the protein structure can be divided into continuous or uniform stretches, which can be defined in terms of helical parameters, and depending on their values the stretches can be classified into different SSEs, namely -helices, 3(10)-helices, -helices, extended -strands and polyproline II (PPII) and other left-handed helices. The methodology was validated using an unbiased clustering of these parameters for a protein data set consisting of 1008 protein chains, which suggested that there are seven well defined clusters associated with different SSEs. Apart from -helices and extended -strands, 3(10)-helices and -helices were also found to occur in substantial numbers. ASSP was able to discriminate non--helical segments from flanking -helices, which were often identified as part of -helices by other algorithms. ASSP can also lead to the identification of novel SSEs. It is believed that ASSP could provide a better understanding of the finer nuances of protein secondary structure and could make an important contribution to the better understanding of comparatively less frequently occurring structural motifs. At the same time, it can contribute to the identification of novel SSEs. A standalone version of the program for the Linux as well as the Windows operating systems is freely downloadable and a web-server version is also available at .