981 resultados para master gene model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variability and complexity of phenotypes observed in microdeletion syndromes can be due to deletion of a single gene whose product participates in several aspects of development or can be due to the deletion of a number of tightly linked genes, each adding its own effect to the syndrome. The p6H deletion in mouse chromosome 7 presents a good model with which to address this question of multigene vs. single-gene pleiotropy. Mice homozygous for the p6H deletion are diluted in pigmentation, are smaller than their littermates, and manifest a nervous jerky-gait phenotype. Male homozygotes are sterile and exhibit profound abnormalities in spermiogenesis. By using N-ethyl-N-nitrosourea (EtNU) mutagenesis and a breeding protocol designed to recover recessive mutations expressed hemizygously opposite a large p-locus deletion, we have generated three noncomplementing mutations that map to the p6H deletion. Each of these EtNU-induced mutations has adverse effects on the size, nervous behavior, and progression of spermiogenesis that characterize p6H deletion homozygotes. Because EtNU is thought to induce primarily intragenic (point) mutations in mouse stem-cell spermatogonia, we propose that the trio of phenotypes (runtiness, nervous jerky gait, and male sterility) expressed in p6H deletion homozygotes is the result of deletion of a single highly pleiotropic gene. We also predict that a homologous single locus, quite possibly tightly linked and distal to the D15S12 (P) locus in human chromosome 15q11-q13, may be associated with similar developmental abnormalities in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes an efficient strategy for determining the functions of sequenced genes in microorganisms. A large population of cells is subjected to insertional mutagenesis. The mutagenized population is then divided into representative samples, each of which is subjected to a different selection. DNA is prepared from each sample population after the selection. The polymerase chain reaction is then used to determine retrospectively whether insertions into a particular sequence affected the outcome of any selection. The method is efficient because the insertional mutagenesis and each selection need only to be performed once to enable the functions of thousands of genes to be investigated, rather than once for each gene. We tested this "genetic footprinting" strategy using the model organism Saccharomyces cerevisiae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of DNA technology to regulate the transcription of disease-related genes in vivo has important therapeutic potentials. The transcription factor E2F plays a pivotal role in the coordinated transactivation of cell cycle-regulatory genes such as c-myc, cdc2, and the gene encoding proliferating-cell nuclear antigen (PCNA) that are involved in lesion formation after vascular injury. We hypothesized that double-stranded DNA with high affinity for E2F may be introduced in vivo as a decoy to bind E2F and block the activation of genes mediating cell cycle progression and intimal hyperplasia after vascular injury. Gel mobility-shift assays showed complete competition for E2F binding protein by the E2F decoy. Transfection with E2F decoy inhibited expression of c-myc, cdc2, and the PCNA gene as well as vascular smooth muscle cell proliferation both in vitro and in the in vivo model of rat carotid injury. Furthermore, 2 weeks after in vivo transfection, neointimal formation was significantly prevented by the E2F decoy, and this inhibition continued up to 8 weeks after a single transfection in a dose-dependent manner. Transfer of an E2F decoy can therefore modulate gene expression and inhibit smooth muscle proliferation and vascular lesion formation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To compare effects of insulin-like growth factor I (IGF-I) and placebo treatment on lesions that resemble those seen during active demyelination in multiple sclerosis, we induced experimental autoimmune encephalomyelitis in Lewis rats with an emulsion containing guinea pig spinal cord and Freund's adjuvant. On day 12-13, pairs of rats with the same degree of weakness were given either IGF-I or placebo intravenously twice daily for 8 days. After 8 days of placebo or IGF-I (200 micrograms/day or 1 mg/day) treatment, the spinal cord lesions were studied by in situ hybridization and with immunocytochemical and morphological methods. IGF-I produced significant reductions in numbers and areas of demyelinating lesions. These lesions contained axons surrounded by regenerating myelin segments instead of demyelinated axons seen in the placebo-treated rats. Relative mRNA levels for myelin basic protein, proteolipid protein (PLP), and 2',3'-cyclic nucleotide 3'-phosphodiesterase in lesions of IGF-I-treated rats were significantly higher than they were in placebo-treated rats. PLP mRNA-containing oligodendroglia also were more numerous and relative PLP mRNA levels per oligodendrocyte were higher in lesions of IGF-I-treated rats. Finally, a significantly higher proportion of proliferating cells were oligodendroglia-like cells in lesions of IGF-I-treated rats. We think that IGF-I effects on oligodendrocytes, myelin protein synthesis, and myelin regeneration reduced lesion severity and promoted clinical recovery in this experimental autoimmune encephalomyelitis model. These IGF-I actions may also benefit patients with multiple sclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical and physical signals have been reported to mediate wound-induced proteinase inhibitor II (Pin2) gene expression in tomato and potato plants. Among the chemical signals, phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and the peptide systemin represent the best characterized systems. Furthermore, electrical and hydraulic mechanisms have also been postulated as putative Pin2-inducing systemic signals. Most of the chemical agents are able to induce Pin2 gene expression without any mechanical wounding. Thus, ABA, JA, and systemin initiate Pin2 mRNA accumulation in the directly treated leaves and in the nontreated leaves (systemic) that are located distal to the treated ones. ABA-deficient tomato and potato plants do not respond to wounding by accumulation of Pin2 mRNA, therefore providing a suitable model system for analysis of the signal transduction pathway involved in wound-induced gene activation. It was demonstrated that the site of action of JA is located downstream to the site of action of ABA. Moreover, systemin represents one of the initial steps in the signal transduction pathway regulating the wound response. Recently, it was reported that heat treatment and mechanical injury generate electrical signals, which propagate throughout the plant. These signals are capable of inducing Pin2 gene expression in the nontreated leaves of wounded plants. Furthermore, electrical current application to tomato leaves leads to an accumulation of Pin2 mRNA in local and systemic tissues. Examination of photosynthetic parameters (assimilation and transpiration rate) on several types of stimuli suggests that heat-induced Pin2 gene expression is regulated by an alternative pathway from that mediating the electrical current and mechanical wound response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used suspension-cultured parsley cells (Petroselinum crispum) and an oligopeptide elicitor derived from a surface glycoprotein of the phytopathogenic fungus Phytophthora megasperma f.sp. glycinea to study the signaling pathway from elicitor recognition to defense gene activation. Immediately after specific binding of the elicitor by a receptor in the plasma membrane, large and transient increases in several inorganic ion fluxes (Ca2+, H+, K+, Cl-) and H2O2 formation are the first detectable plant cell responses. These are rapidly followed by transient changes in the phosphorylation status of various proteins and by the activation of numerous defense-related genes, concomitant with the inactivation of several other, non-defense-related genes. A great diversity of cis-acting elements and trans-acting factors appears to be involved in elicitor-mediated gene regulation, similar to the apparently complex nature of the signal transduced intracellularly. With few exceptions, all individual defense responses analyzed in fungus-infected parsley leaves have been found to be closely mimicked in elicitor-treated, cultured parsley cells, thus validating the use of the elicitor/cell culture system as a valuable model system for these types of study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful gene transfer into stem cells would provide a potentially useful therapeutic modality for treatment of inherited and acquired disorders affecting hematopoietic tissues. Coculture of primate bone marrow cells with retroviral producer cells, autologous stroma, or an engineered stromal cell line expressing human stem cell factor has resulted in a low efficiency of gene transfer as reflected by the presence of 0.1-5% of genetically modified cells in the blood of reconstituted animals. Our experiments in a nonhuman primate model were designed to explore various transduction protocols that did not involve coculture in an effort to define clinically useful conditions and to enhance transduction efficiency of repopulating cells. We report the presence of genetically modified cells at levels ranging from 0.1% (granulocytes) to 14% (B lymphocytes) more than 1 year following reconstitution of myeloablated animals with CD34+ immunoselected cells transduced in suspension culture with cytokines for 4 days with a retrovirus containing the glucocerebrosidase gene. A period of prestimulation for 7 days in the presence of autologous stroma separated from the CD34+ cells by a porous membrane did not appear to enhance transduction efficiency. Infusion of transduced CD34+ cells into animals without myeloablation resulted in only transient appearance of genetically modified cells in peripheral blood. Our results document that retroviral transduction of primate repopulating cells can be achieved without coculture with stroma or producer cells and that the proportion of genetically modified cells may be highest in the B-lymphoid lineage under the given transduction conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex three-dimensional waves of excitation can explain the observed cell movement pattern in Dictyostelium slugs. Here we show that these three-dimensional waves can be produced by a realistic model for the cAMP relay system [Martiel, J. L. & Goldbeter, A. (1987) Biophys J. 52, 807-828]. The conversion of scroll waves in the prestalk zone of the slug into planar wave fronts in the prespore zone can result from a smaller fraction of relaying cells in the prespore zone. Further, we show that the cAMP concentrations to which cells in a slug are exposed over time display a simple pattern, despite the complex spatial geometry of the waves. This cAMP distribution agrees well with observed patterns of cAMP-regulated cell type-specific gene expression. The core of the spiral, which is a region of low cAMP concentration, might direct expression of stalk-specific genes during culmination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified a murine gene, metaxin, that spans the 6-kb interval separating the glucocerebrosidase gene (GC) from the thrombospondin 3 gene on chromosome 3E3-F1. Metaxin and GC are transcribed convergently; their major polyadenylylation sites are only 431 bp apart. On the other hand, metaxin and the thrombospondin 3 gene are transcribed divergently and share a common promoter sequence. The cDNA for metaxin encodes a 317-aa protein, without either a signal sequence or consensus for N-linked glycosylation. Metaxin protein is expressed ubiquitously in tissues of the young adult mouse, but no close homologues have been found in the DNA or protein data bases. A targeted mutation (A-->G in exon 9) was introduced into GC by homologous recombination in embryonic stem cells to establish a mouse model for a mild form of Gaucher disease. A phosphoglycerate kinase-neomycin gene cassette was also inserted into the 3'-flanking region of GC as a selectable marker, at a site later identified as the terminal exon of metaxin. Mice homozygous for the combined mutations die early in gestation. Since the same amino acid mutation in humans is associated with mild type 1 Gaucher disease, we suggest that metaxin protein is likely to be essential for embryonic development in mice. Clearly, the contiguous gene organization at this locus limits targeting strategies for the production of murine models of Gaucher disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have explored the feasibility of using a "double-tagging" assay for assessing which amino acids of a protein are responsible for its binding to another protein. We have chosen the adenovirus E1A-retinoblastoma gene product (pRB) proteins for a model system, and we focused on the high-affinity conserved region 2 of adenovirus E1A (CR2). We used site-specific mutagenesis to generate a mutant E1A gene with a lysine instead of an aspartic acid at position 121 within the CR2 site. We demonstrated that this mutant exhibited little binding to pRB by the double-tagging assay. We also have shown that this lack of binding is not due to any significant decrease in the level of expression of the beta-galactosidase-E1A fusion protein. We then created a "library" of phage expressing beta-galactosidase-E1A fusion proteins with a variety of different mutations within CR2. This library of E1A mutations was used in a double-tagging screening to identify mutant clones that bound to pRB. Three classes of phage were identified: the vast majority of clones were negative and exhibited no binding to pRB. Approximately 1 in 10,000 bound to pRB but not to E1A ("true positives"). A variable number of clones appeared to bind equally well to both pRB and E1A ("false positives"). The DNA sequence of 10 true positive clones yielded the following consensus sequence: DLTCXEX, where X = any amino acid. The recovery of positive clones with only one of several allowed amino acids at each position suggests that most, if not all, of the conserved residues play an important role in binding to pRB. On the other hand, the DNA sequence of the negative clones appeared random. These results are consistent with those obtained from other sources. These data suggest that a double-tagging assay can be employed for determining which amino acids of a protein are important for specifying its interaction with another protein if the complex forms within bacteria. This assay is rapid and up to 1 x 10(6) mutations can be screened at one time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoblastoma cells in culture have previously been shown to express cone-specific genes but not their rod counterparts. We have detected the messages for the rod alpha, beta, and gamma subunits of cGMP phosphodiesterase (PDE), the rod alpha subunit of transducin, rod opsin, and the cone alpha' subunit of PDE in RNA of human Y-79 retinoblastoma cells by reverse transcription-PCR. Quantitative analysis of the mRNAs for the rod alpha and cone alpha' PDE subunits revealed that they were expressed at comparable levels; however, the transcript encoding the rod beta PDE subunit was 10 times more abundant in these cells. Northern hybridization analysis of Y-79 cell RNA confirmed the presence of the transcripts for rod and cone PDE catalytic subunits. To test whether the transcriptional machinery required for the expression of rod-specific genes was endogenous in Y-79 retinoblastoma cells, cultures were transfected with a construct containing the promoter region of the rod beta PDE subunit gene attached to the firefly luciferase reporter vector. Significant levels of reporter enzyme activity were observed in the cell lysates. Our results demonstrate that the Y-79 retinoblastoma cell line is a good model system for the study of transcriptional regulation of rod-specific genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plant growth hormone indole-3-acetic acid (IAA) transcriptionally activates expression of several genes in plants. We have previously identified a 164-bp promoter region (-318 to -154) in the PS-IAA4/5 gene that confers IAA inducibility. Linker-scanning mutagenesis across the region has identified two positive domains: domain A (48 bp; -203 to -156) and domain B (44 bp; -299 to -256), responsible for transcriptional activation of PS-IAA4/5 by IAA. Domain A contains the highly conserved sequence 5'-TGTCCCAT-3' found among various IAA-inducible genes and behaves as the major auxin-responsive element. Domain B functions as an enhancer element which may also contain a less efficient auxin-responsive element. The two domains act cooperatively to stimulate transcription; however, tetramerization of domain A or B compensates for the loss of A or B function. The two domains can also mediate IAA-induced transcription from the heterologous cauliflower mosaic virus 35S promoter (-73 to +1). In vivo competition experiments with icosamers of domain A or B show that the domains interact specifically and with different affinities to low abundance, positive transcription factor(s). A model for transcriptional activation of PS-IAA4/5 by IAA is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paper submitted to ACE 2013, 10th IFAC Symposium on Advances in Control Education, University of Sheffield, UK, August 28-30, 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proinsulin has been characterized as a neuroprotective molecule. In this work we assess the therapeutic potential of proinsulin on photoreceptor degeneration, synaptic connectivity, and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). P23H homozygous rats received an intramuscular injection of an adeno-associated viral vector serotype 1 (AAV1) expressing human proinsulin (hPi+) or AAV1-null vector (hPi−) at P20. Levels of hPi in serum were determined by enzyme-linked immunosorbent assay (ELISA), and visual function was evaluated by electroretinographic (ERG) recording at P30, P60, P90, and P120. Preservation of retinal structure was assessed by immunohistochemistry at P120. Human proinsulin was detected in serum from rats injected with hPi+ at all times tested, with average hPi levels ranging from 1.1 nM (P30) to 1.4 nM (P120). ERG recordings showed an amelioration of vision loss in hPi+ animals. The scotopic b-waves were significantly higher in hPi+ animals than in control rats at P90 and P120. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. hPi+ animals had 48.7% more photoreceptors than control animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in hPi+ P23H rats. Furthermore, in hPi+ rat retinas the number of rod bipolar cell bodies was greater than in control rats. Our data demonstrate that hPi expression preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in the P23H rat. These data strongly support the further development of proinsulin-based therapy to counteract retinitis pigmentosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) represents a genetically heterogeneous group of retinal dystrophies affecting mainly the rod photoreceptors and in some instances also the retinal pigment epithelium (RPE) cells of the retina. Clinical symptoms and disease progression leading to moderate to severe loss of vision are well established and despite significant progress in the identification of causative genes, the disease pathology remains unclear. Lack of this understanding has so far hindered development of effective therapies. Here we report successful generation of human induced pluripotent stem cells (iPSC) from skin fibroblasts of a patient harboring a novel Ser331Cysfs*5 mutation in the MERTK gene. The patient was diagnosed with an early onset and severe form of autosomal recessive RP (arRP). Upon differentiation of these iPSC towards RPE, patient-specific RPE cells exhibited defective phagocytosis, a characteristic phenotype of MERTK deficiency observed in human patients and animal models. Thus we have created a faithful cellular model of arRP incorporating the human genetic background which will allow us to investigate in detail the disease mechanism, explore screening of a variety of therapeutic compounds/reagents and design either combined cell and gene- based therapies or independent approaches.