890 resultados para lower upper bound estimation
Resumo:
We introduce an algorithm (called REDFITmc2) for spectrum estimation in the presence of timescale errors. It is based on the Lomb-Scargle periodogram for unevenly spaced time series, in combination with the Welch's Overlapped Segment Averaging procedure, bootstrap bias correction and persistence estimation. The timescale errors are modelled parametrically and included in the simulations for determining (1) the upper levels of the spectrum of the red-noise AR(1) alternative and (2) the uncertainty of the frequency of a spectral peak. Application of REDFITmc2 to ice core and stalagmite records of palaeoclimate allowed a more realistic evaluation of spectral peaks than when ignoring this source of uncertainty. The results support qualitatively the intuition that stronger effects on the spectrum estimate (decreased detectability and increased frequency uncertainty) occur for higher frequencies. The surplus information brought by algorithm REDFITmc2 is that those effects are quantified. Regarding timescale construction, not only the fixpoints, dating errors and the functional form of the age-depth model play a role. Also the joint distribution of all time points (serial correlation, stratigraphic order) determines spectrum estimation.
Resumo:
Here we present a study of the 11 yr sunspot cycle's imprint on the Northern Hemisphere atmospheric circulation, using three recently developed gridded upper-air data sets that extend back to the early twentieth century. We find a robust response of the tropospheric late-wintertime circulation to the sunspot cycle, independent from the data set. This response is particularly significant over Europe, although results show that it is not directly related to a North Atlantic Oscillation (NAO) modulation; instead, it reveals a significant connection to the more meridional Eurasian pattern (EU). The magnitude of mean seasonal temperature changes over the European land areas locally exceeds 1 K in the lower troposphere over a sunspot cycle. We also analyse surface data to address the question whether the solar signal over Europe is temporally stable for a longer 250 yr period. The results increase our confidence in the existence of an influence of the 11 yr cycle on the European climate, but the signal is much weaker in the first half of the period compared to the second half. The last solar minimum (2005 to 2010), which was not included in our analysis, shows anomalies that are consistent with our statistical results for earlier solar minima.
Resumo:
In July and August 2010 floods of unprecedented impact afflicted Pakistan. The floods resulted from a series of intense multi-day precipitation events in July and early August. At the same time a series of blocking anticyclones dominated the upper-level flow over western Russia and breaking waves i.e. equatorward extrusions of stratospheric high potential vorticity (PV) air formed along the downstream flank of the blocks. Previous studies suggested that these extratropical upper-level breaking waves were crucial for instigating the precipitation events in Pakistan. Here a detailed analysis is provided of the extratropical forcing of the precipitation. Piecewise PV inversion is used to quantify the extratropical upper-level forcing associated with the wave breaking and trajectories are calculated to study the pathways and source regions of the moisture that precipitated over Pakistan. Limited-area model simulations are carried out to complement the Lagrangian analysis. The precipitation events over Pakistan resulted from a combination of favourable boundary conditions with strong extratropical and monsoonal forcing factors. Above-normal sea-surface temperatures in the Indian Ocean led to an elevated lower-tropospheric moisture content. Surface monsoonal depressions ensured the transport of moist air from the ocean towards northeastern Pakistan. Along this pathway the air parcel humidity increased substantially (60–90% of precipitated moisture) via evapotranspiration from the land surface. Extratropical breaking waves influenced the surface wind field substantially by enhancing the wind component directed towards the mountains which reinforced the precipitation.
Resumo:
PURPOSE Little data is available on noninvasive MRI-based assessment of renal function during upper urinary tract (UUT) obstruction. In this study, we determined whether functional multiparametric kidney MRI is able to monitor treatment response in acute unilateral UUT obstruction. MATERIAL AND METHODS Between 01/2008 and 01/2010, 18 patients with acute unilateral UUT obstruction due to calculi were prospectively enrolled to undergo kidney MRI with conventional, blood oxygen level-dependent (BOLD) and diffusion-weighted (DW) sequences on emergency admission and after release of obstruction. Functional imaging parameters of the obstructed and contralateral unobstructed kidneys derived from BOLD (apparent spin relaxation rate [R2*]) and DW (total apparent diffusion coefficient [ADCT], pure diffusion coefficient [ADCD] and perfusion fraction [FP]) sequences were assessed during acute UUT obstruction and after its release. RESULTS During acute obstruction, R2* and FP values were lower in the cortex (p=0.020 and p=0.031, respectively) and medulla (p=0.012 and p=0.190, respectively) of the obstructed compared to the contralateral unobstructed kidneys. After release of obstruction, R2* and FP values increased both in the cortex (p=0.016 and p=0.004, respectively) and medulla (p=0.071 and p=0.044, respectively) of the formerly obstructed kidneys to values similar to those found in the contralateral kidneys. ADCT and ADCD values did not significantly differ between obstructed and contralateral unobstructed kidneys during or after obstruction. CONCLUSIONS In our patients with acute unilateral UUT obstruction due to calculi, functional kidney MRI using BOLD and DW sequences allowed for the monitoring of pathophysiologic changes of obstructed kidneys during obstruction and after its release.
Resumo:
Upper Jurassic (Kimmeridgian)±Upper Cretaceous (Cenomanian) inner platform carbonates in the Western Taurides are composed of metre-scale upward-shallowing cyclic deposits (parasequences) and important karstic surfaces capping some of the cycles. Peritidal cycles (shallow subtidal facies capped by tidal-¯at laminites or fenestrate limestones) are regressive- and transgressive-prone (upward-deepening followed by upward-shallowing facies trends). Subtidal cycles are of two types and indicate incomplete shallowing. Submerged subtidal cycles are composed of deeper subtidal facies overlain by shallow subtidal facies. Exposed subtidal cycles consist of deeper subtidal facies overlain by shallow subtidal facies that are capped by features indicative of prolonged subaerial exposure. Subtidal facies occur characteristically in the Jurassic, while peritidal cycles are typical for the Lower Cretaceous of the region. Within the foraminiferal and dasyclad algal biostratigraphic framework, four karst breccia levels are recognized as the boundaries of major second-order cycles, introduced for the ®rst time in this study. These levels correspond to the Kimmeridgian±Portlandian boundary, mid-Early Valanginian, mid-Early Aptian and mid-Cenomanian and represent important sea level falls which affected the distribution of foraminiferal fauna and dasyclad ¯ora of the Taurus carbonate platform. Within the Kimmeridgian±Cenomanian interval 26 third-order sequences (types 1 and 2) are recognized. These sequences are the records of eustatic sea level ¯uctuations rather than the records of local tectonic events because the boundaries of the sequences representing 1±4 Ma intervals are correlative with global sea level falls. Third-order sequences and metre-scale cyclic deposits are the major units used for long-distance, high-resolution sequence stratigraphic correlation in the Western Taurides. Metre-scale cyclic deposits (parasequences) in the Cretaceous show genetical stacking patterns within third-order sequences and correspond to fourth-order sequences representing 100±200 ka. These cycles are possibly the E2 signal (126 ka) of the orbital eccentricity cycles of the Milankovitch band. The slight deviation of values, calculated for parasequences, from the mean value of eccentricity cycles can be explained by the currently imprecise geochronology established in the Cretaceous and missed sea level oscillations when the platform lay above fluctuating sea level.
Resumo:
The multiple high-pressure (HP), low-temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction- and continental accretion-related evolution of the eastern limb of the long-lived Aegean subduction system. Recent reports of the HP–LT index mineral Fe-Mg-carpholite in three metasedimentary units of the Gondwana-derived Anatolide–Tauride continental block (namely the Afyon Zone, the Ören Unit and the southern Menderes Massif) suggest a more complicated scenario than the single-continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica 40Ar–39Ar geochronology), and where possible are combined with P–T estimates (chlorite thermometry, phengite barometry, multi-equilibrium thermobarometry), on carpholite-bearing rocks from these three HP–LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite-bearing assemblages were retrogressed through greenschist-facies conditions at c. 67–62 Ma. Early retrograde stages in the Ören Unit are dated to 63–59 Ma. In the Kurudere–Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post-collisional cooling to c. 26 Ma. These new results support that the Ören Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere–Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP–LT metamorphic belts thus formed: the northernmost Tavşanlı Zone (c. 88–82 Ma), the Ören–Afyon Zone (between 70 and 65 Ma), and the Kurudere–Nebiler Unit (c. 52–45 Ma). The southward younging trend of the HP–LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93–90 and c. 35 Ma. After the accretion of the Menderes–Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian-type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll-back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography.
Resumo:
Neodymium (Nd) isotopes are an important geochemical tool to trace the present and past water mass mixing as well as continental inputs. The distribution of Nd concentrations in open ocean surface waters (0�100 m) is generally assumed to be controlled by lateral mixing of Nd from coastal surface currents and by removal through reversible particle scavenging. However, using 228Ra activity as an indicator of coastal water mass influence, surface water Nd concentration data available on key oceanic transects as a whole do not support the above scenario. From a global compilation of available data, we find that more stratified regions are generally associated with low surface Nd concentrations. This implies that upper ocean vertical supply may be an as yet neglected primary factor in determining the basin-scale variations of surface water Nd concentrations. Similar to the mechanism of nutrients supply, it is likely that stratification inhibits vertical supply of Nd from the subsurface thermocline waters and thus the magnitude of Nd flux to the surface layer. Consistently, the estimated required input flux of Nd to the surface layer to maintain the observed concentrations could be nearly two orders of magnitudes larger than riverine/dust flux, and also larger than the model-based estimation on shelf-derived coastal flux. In addition, preliminary results from modeling experiments reveal that the input from shallow boundary sources, riverine input, and release from dust are actually not the primary factors controlling Nd concentrations most notably in the Pacific and Southern Ocean surface waters.
Resumo:
BACKGROUND Although well-established for suspected lower limb deep venous thrombosis, an algorithm combining a clinical decision score, d-dimer testing, and ultrasonography has not been evaluated for suspected upper extremity deep venous thrombosis (UEDVT). OBJECTIVE To assess the safety and feasibility of a new diagnostic algorithm in patients with clinically suspected UEDVT. DESIGN Diagnostic management study. (ClinicalTrials.gov: NCT01324037) SETTING: 16 hospitals in Europe and the United States. PATIENTS 406 inpatients and outpatients with suspected UEDVT. MEASUREMENTS The algorithm consisted of the sequential application of a clinical decision score, d-dimer testing, and ultrasonography. Patients were first categorized as likely or unlikely to have UEDVT; in those with an unlikely score and normal d-dimer levels, UEDVT was excluded. All other patients had (repeated) compression ultrasonography. The primary outcome was the 3-month incidence of symptomatic UEDVT and pulmonary embolism in patients with a normal diagnostic work-up. RESULTS The algorithm was feasible and completed in 390 of the 406 patients (96%). In 87 patients (21%), an unlikely score combined with normal d-dimer levels excluded UEDVT. Superficial venous thrombosis and UEDVT were diagnosed in 54 (13%) and 103 (25%) patients, respectively. All 249 patients with a normal diagnostic work-up, including those with protocol violations (n = 16), were followed for 3 months. One patient developed UEDVT during follow-up, for an overall failure rate of 0.4% (95% CI, 0.0% to 2.2%). LIMITATIONS This study was not powered to show the safety of the substrategies. d-Dimer testing was done locally. CONCLUSION The combination of a clinical decision score, d-dimer testing, and ultrasonography can safely and effectively exclude UEDVT. If confirmed by other studies, this algorithm has potential as a standard approach to suspected UEDVT. PRIMARY FUNDING SOURCE None.
Resumo:
BACKGROUND: To investigate if non-rigid image-registration reduces motion artifacts in triggered and non-triggered diffusion tensor imaging (DTI) of native kidneys. A secondary aim was to determine, if improvements through registration allow for omitting respiratory-triggering. METHODS: Twenty volunteers underwent coronal DTI of the kidneys with nine b-values (10-700 s/mm2 ) at 3 Tesla. Image-registration was performed using a multimodal nonrigid registration algorithm. Data processing yielded the apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA). For comparison of the data stability, the root mean square error (RMSE) of the fitting and the standard deviations within the regions of interest (SDROI ) were evaluated. RESULTS: RMSEs decreased significantly after registration for triggered and also for non-triggered scans (P < 0.05). SDROI for ADC, FA, and FP were significantly lower after registration in both medulla and cortex of triggered scans (P < 0.01). Similarly the SDROI of FA and FP decreased significantly in non-triggered scans after registration (P < 0.05). RMSEs were significantly lower in triggered than in non-triggered scans, both with and without registration (P < 0.05). CONCLUSION: Respiratory motion correction by registration of individual echo-planar images leads to clearly reduced signal variations in renal DTI for both triggered and particularly non-triggered scans. Secondarily, the results suggest that respiratory-triggering still seems advantageous.J. Magn. Reson. Imaging 2014. (c) 2014 Wiley Periodicals, Inc.
Resumo:
BACKGROUND Sacral neuromodulation has become a well-established and widely accepted treatment for refractory non-neurogenic lower urinary tract dysfunction, but its value in patients with a neurological cause is unclear. Although there is evidence indicating that sacral neuromodulation may be effective and safe for treating neurogenic lower urinary tract dysfunction, the number of investigated patients is low and there is a lack of randomized controlled trials. METHODS AND DESIGN This study is a prospective, randomized, placebo-controlled, double-blind multicenter trial including 4 sacral neuromodulation referral centers in Switzerland. Patients with refractory neurogenic lower urinary tract dysfunction are enrolled. After minimally invasive bilateral tined lead placement into the sacral foramina S3 and/or S4, patients undergo prolonged sacral neuromodulation testing for 3-6 weeks. In case of successful (defined as improvement of at least 50% in key bladder diary variables (i.e. number of voids and/or number of leakages, post void residual) compared to baseline values) prolonged sacral neuromodulation testing, the neuromodulator is implanted in the upper buttock. After a 2 months post-implantation phase when the neuromodulator is turned ON to optimize the effectiveness of neuromodulation using sub-sensory threshold stimulation, the patients are randomized in a 1:1 allocation in sacral neuromodulation ON or OFF. At the end of the 2 months double-blind sacral neuromodulation phase, the patients have a neuro-urological re-evaluation, unblinding takes place, and the neuromodulator is turned ON in all patients. The primary outcome measure is success of sacral neuromodulation, secondary outcome measures are adverse events, urodynamic parameters, questionnaires, and costs of sacral neuromodulation. DISCUSSION It is of utmost importance to know whether the minimally invasive and completely reversible sacral neuromodulation would be a valuable treatment option for patients with refractory neurogenic lower urinary tract dysfunction. If this type of treatment is effective in the neurological population, it would revolutionize the management of neurogenic lower urinary tract dysfunction. TRIAL REGISTRATION TRIAL REGISTRATION NUMBER http://www.clinicaltrials.gov; Identifier: NCT02165774.
Resumo:
Instruments for on-farm determination of colostrum quality such as refractometers and densimeters are increasingly used in dairy farms. The colour of colostrum is also supposed to reflect its quality. A paler or mature milk-like colour is associated with a lower colostrum value in terms of its general composition compared with a more yellowish and darker colour. The objective of this study was to investigate the relationships between colour measurement of colostrum using the CIELAB colour space (CIE L*=from white to black, a*=from red to green, b*=from yellow to blue, chroma value G=visual perceived colourfulness) and its composition. Dairy cow colostrum samples (n=117) obtained at 4·7±1·5 h after parturition were analysed for immunoglobulin G (IgG) by ELISA and for fat, protein and lactose by infrared spectroscopy. For colour measurements, a calibrated spectrophotometer was used. At a cut-off value of 50 mg IgG/ml, colour measurement had a sensitivity of 50·0%, a specificity of 49·5%, and a negative predictive value of 87·9%. Colostral IgG concentration was not correlated with the chroma value G, but with relative lightness L*. While milk fat content showed a relationship to the parameters L*, a*, b* and G from the colour measurement, milk protein content was not correlated with a*, but with L*, b*, and G. Lactose concentration in colostrum showed only a relationship with b* and G. In conclusion, parameters of the colour measurement showed clear relationships to colostral IgG, fat, protein and lactose concentration in dairy cows. Implementation of colour measuring devices in automatic milking systems and milking parlours might be a potential instrument to access colostrum quality as well as detecting abnormal milk.
Resumo:
Cramér Rao Lower Bounds (CRLB) have become the standard for expression of uncertainties in quantitative MR spectroscopy. If properly interpreted as a lower threshold of the error associated with model fitting, and if the limits of its estimation are respected, CRLB are certainly a very valuable tool to give an idea of minimal uncertainties in magnetic resonance spectroscopy (MRS), although other sources of error may be larger. Unfortunately, it has also become standard practice to use relative CRLB expressed as a percentage of the presently estimated area or concentration value as unsupervised exclusion criterion for bad quality spectra. It is shown that such quality filtering with widely used threshold levels of 20% to 50% CRLB readily causes bias in the estimated mean concentrations of cohort data, leading to wrong or missed statistical findings-and if applied rigorously-to the failure of using MRS as a clinical instrument to diagnose disease characterized by low levels of metabolites. Instead, absolute CRLB in comparison to those of the normal group or CRLB in relation to normal metabolite levels may be more useful as quality criteria. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Purpose To investigate the prognosis of adenocarcinomas of the upper third of the rectum and the rectosigmoid-junction without radiotherapy. Methods Patients from a multicenter randomized controlled trial from 1987–1993 on adjuvant chemotherapy for R0-resected colorectal cancers with stage I–III disease were retrospectively allocated: cancers of the lower two-thirds of the rectum (11 cm or less from anal-verge, Group A, n = 205), of the upper-third of the rectum and rectosigmoid-junction (>11–20 cm from anal-verge, Group B, n = 142), and of the colon (>20 cm from anal-verge, Group C, n = 378). The total mesorectal excision (TME) technique had not been introduced yet. The adjuvant chemotherapy turned out to be ineffective. None of the patients received neoadjuvant or adjuvant radiotherapy. Results The patients had a regular follow-up (median, 8.0 years). The 5-year disease-free survival (DFS) rate was 0.54 (95%CI, 0.47–0.60) in Group A, 0.68 (95%CI, 0.60–0.75) in Group B, and 0.69 (95%CI, 0.64–0.74) in Group C. The 5-year overall survival (OS) rate was 0.64 (95%CI, 0.57–0.71) in Group A, 0.79 (95%CI, 0.71–0.85) in Group B, and 0.77 (95%CI, 0.73–0.81) in Group C. Compared with Group C, patients in Group A had a significantly worse OS (hazard ratio [HR] for death 2.10) and a worse DFS (HR for relapse/death 1.93), while patients in Group B had a similar OS (HR 1.12) and DFS (HR 1.07). Conclusions Adenocarcinomas of the upper third of the rectum and the rectosigmoid-junction seem to have similar prognosis as colon cancers. Even for surgeons not familiar with the TME technique, preoperative radiotherapy may be avoided for most rectosigmoid cancers above 11 cm from anal-verge.
Resumo:
To reconstruct the vegetation history of the Upper Engadine, continuous sediment cores covering the past 11 800 years from Lej da Champfer and Lej da San Murezzan (Upper Engadine Valley, c. 1800 m a.s.l., southeastern Switzerland) have been analysed for pollen and plant macrofossils. The chronologies of the cores are based on 16 and 22 radiocarbon dates, respectively. The palaeobotanical records of both lakes are in agreement for the Holocene, but remarkable differences exist between the sites during the period 11 100 to 10 500 cal. BP, when Lej da Champfer was affected by re-sedimentation processes. Macrofossil data suggest that Holocene afforestation began at around 11400 cal. BP. A climatic deterioration, the Preboreal Oscillation, stopped and subsequently delayed the establishment of trees until c. 11000 cal. BP, when first Betula, then Pinus sylvestrislmugo, then Larix 300 years later, and finally Pinus cembra expanded within the lake catchment. Treeline was at c. 1500 m during the Younger Dryas (12 542- 11 550 cal. BP) in the Central Alps. Our results, along with other macrofossil studies from the Alps, suggest a nearly simultaneous afforestation (e.g., by Pinus sylvestris in the lower subalpine belt) between 1500 and 2340 m a.s.l. at around 11 400 to 11 300 cal. BP. We suggest that forest-limit species (e.g., Pinus cembra, Larix decidua) could expand faster at today's treeline (c. 2350 m a.s.l.), than 550 m lower. Earlier expansions at higher altitudes probably resulted from reduced competition with low-altitude trees (e.g. Pinus sylvestris) and herbaceous species. Comparison with other proxies such as oxygen isotopes, residual A14C, glacier fluctuations, and alpine climatic cooling phases suggests climatic sensitivity of vegetation during the early Holocene.
Resumo:
The first operations at the new High-altitude Maïdo Observatory at La Réunion began in 2013. The Maïdo Lidar Calibration Campaign (MALICCA) was organized there in April 2013 and has focused on the validation of the thermodynamic parameters (temperature, water vapor, and wind) measured with many instruments including the new very large lidar for water vapor and temperature profiles. The aim of this publication consists of providing an overview of the different instruments deployed during this campaign and their status, some of the targeted scientific questions and associated instrumental issues. Some specific detailed studies for some individual techniques were addressed elsewhere. This study shows that temperature profiles were obtained from the ground to the mesopause (80 km) thanks to the lidar and regular meteorological balloon-borne sondes with an overlap range showing good agreement. Water vapor is also monitored from the ground to the mesopause by using the Raman lidar and microwave techniques. Both techniques need to be pushed to their limit to reduce the missing range in the lower stratosphere. Total columns obtained from global positioning system or spectrometers are valuable for checking the calibration and ensuring vertical continuity. The lidar can also provide the vertical cloud structure that is a valuable complementary piece of information when investigating the water vapor cycle. Finally, wind vertical profiles, which were obtained from sondes, are now also retrieved at Maïdo from the newly implemented microwave technique and the lidar. Stable calibrations as well as a small-scale dynamical structure are required to monitor the thermodynamic state of the middle atmosphere, ensure validation of satellite sensors, study the transport of water vapor in the vicinity of the tropical tropopause and study their link with cirrus clouds and cyclones and the impact of small-scale dynamics (gravity waves) and their link with the mean state of the mesosphere.