984 resultados para live food


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five species of bresilioid shrimp were investigated at seven hydrothermal sites on the Mid-Atlantic Ridge: Menez Gwen, Lucky Strike, Rainbow, Broken Spur, TAG, Snake Pit and Logatchev. Samples were prepared for analysis of stable isotopes, elemental composition and lipids. Shrimp behaviour was observed from the submersible ‘Alvin’ and in the laboratory aboard RV ‘Atlantis’. The distribution and zonation of the shrimp species was recorded. Juvenile shrimp of all species arrive at the vents carrying reserves of photosynthetic origin, built-up in the pelagic larval stages. These reserves are used while the shrimp metamorphose to the adult form and, in Rimicaris exoculata and Chorocaris chacei, while they develop epibiotic bacteria supporting structures, the modified mouthparts and the inside of the carapace. The main food of adult R. exoculata is filamentous bacteria that grow on these structures. The intermediate sizes of C. chacei also feed on such bacteria, but the final stage gets some food by scavenging or predation. Mirocaris species scavenge diverse sources; they are not trophically dependent on either R. exoculata or mussels. Adults of Alvinocaris markensis are predators of other vent animals, including R. exoculata. The dense swarms of R. exoculata, with their exosymbionts, can be compared to endosymbiont-containing animals such as Bathymodiolus and the vestimentiferan tube-worms of the Pacific vents. Such associations, whether endo- or ectosymbiotic, may be necessary for the development of flourishing communities at hydrothermal vents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feeding and metabolic rates of Mytilus edulis L. of different body sizes were measured in response to changes in particle concentrations ranging from 2 to 350 mg l-1. Rates of oxygen consumption were not significantly affected by changes in seston concentration, whereas clearance rates gradually declined with increasing particle concentration. Pseudofaeces production was initiated at relatively low seston concentrations (<5 mg l-1). Marked seasonal changes were recorded in the composition of suspended particulates (seston) in an estuary in south-west England. Total seston was sampled at frequent intervals throughout an annual cycle and analysed in terms of: particle size-frequency distributions, total dry weight (mg l-1), inorganic content, chlorophyll a, carbohydrate, protein and lipid. The particulate carbohydrate, protein and lipid content provided an estimate of the food content of the seston. The results are discussed in terms of the “food available” to a nonselective suspension feeder, such as M. edulis, during a seasonal cycle. The effect of inorganic silt in suspension was mainly to limit by “dilution” the amount of food material ingested rather than to reduce the amount of material filtered by the mussel. In winter, the food content of the material ingested was 5%, and this increased to 25% during the spring and summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivariate experiments are used to study the effects of body size, food concentration, and season on the oxygen consumption, ammonia excretion, food assimilation efficiency and filtration rate of Mytilus edulis adults. Food concentrations and season affect both the intercept and the slope of the allometric equation describing oxygen uptake as a function of body size. Multiple regression and response surface techniques are used to describe and illustrate the complex relationship between metabolic rate, ration, season and the body size of M. edulis. Filtration rate has a relatively low weight exponent Q> = 038) and the intercept for the allometric equation is not significantly affected by food concentration, season or acclimation temperatures between 5 and 20 °C. Food assimilation efficiency declines exponentially with increasing food concentration and is dependent on body size at high food levels. The rate of ammonia excretion shows a similar seasonal cycle to that of oxygen consumption. They are both minimal in the autumn/winter and reach a maximum in the spring /summer.