992 resultados para lattice parameter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the application of the Taguchi experimental design approach in optimizing the key process parameters for micro-welding of thin AISI 316L foil using the 100W CW fibre laser. A L16 Taguchi experiment was conducted to systematically understand how the power, scanning velocity, focus position, gas flow rate and type of shielding gas affect the bead dimensions. The welds produced in the L16 Taguchi experiment was mainly of austenite cellular-dendrite structure with an average grain size of 5µm. An exact penetration weld with the largest penetration to fusion width ratio was obtained. Among those process parameters, the interaction between power and scanning velocity presented the strongest effect to the penetration to fusion width ratio and the power was found to be the predominantly important factor that drives the interaction with other factors to appreciably affect the bead dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A L27 Taguchi experiment was done to investigate the effect of laser power, welding time, laser mode (CW and two pulsed modes), focus position, and their possible interactions on the weld-bead aspect ratio of laser-welded NiTi wires by using a 100W fibre laser. The optimized parameter setting to produce the full penetrated weldment with minimum welding defects is successfully determined in the Taguchi experiment. The laser mode is found to be the most important parameter that directly controls the weld-bead aspect ratio. The focus position is the secondly important parameter for the laser welding of NiTi wires. Strong interaction between the power and focus position is found in the Taguchi experiment. The optimized weldment produced by the Taguchi experiment is mainly of columnar dendritic structure in the weld zone (WZ) with the size of 1-3µm, while the HAZ exhibits equiaxed grain structure with the size of 5-10µm. The Vickers micro-hardness test indicted that the WZ and HAZ in the weldment are softened to certain extends after fibre laser welding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

System Dynamics enables modelling and simulation of highly non-linear feedback systems to predict future system behaviour. Parameter estimation and equation formulation are techniques in System Dynamics, used to retrieve the values of parameters or the equations for ?ows and/or variables. These techniques are crucial for the annotations and thereafter the simulation. This paper critically examines existing and well established approaches in parameter estimation and equation formulation along with their limitations, identifying performance gaps as well as providing directions for potential future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, a preliminary study was done to find out the initial parameter window to obtain the full-penetrated NiTi weldment. A L27 Taguchi experiment was then carried out to statistically study the effects of the welding parameters and their possible interactions on the weld bead aspect ratio (or penetration over fuse-zone width ratio), and to determine the optimized parameter settings to produce the full-penetrated weldment with desirable aspect ratio. From the statistical results in the Taguchi experiment, the laser mode was found to be the most important factor that substantially affects the aspect ratio. Strong interaction between the power and focus position was found in the Taguchi experiment. The optimized weldment was mainly of columnar dendritic structure in the weld zone (WZ), while the HAZ exhibited equiaxed grain structure. The XRD and DSC results showed that the WZ remained the B2 austenite structure without any precipitates, but with a significant decrease of phase transformation temperatures. The results in the micro-hardness and tensile tests indicated that the mechanical properties of NiTi were decreased to a certain extent after fibre laser welding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tolerance allocation is an important step in the design process. It is necessary to produce high quality components cost-effectively. However, the process of allocating tolerances can be time consuming and difficult, especially for complex models. This work demonstrates a novel CAD based approach, where the sensitivities of product dimensions to changes in the values of the feature parameters in the CAD model are computed. These are used to automatically establish the assembly response function for the product. This information has been used to automatically allocate tolerances to individual part dimensions to achieve specified tolerances on the assembly dimensions, even for tolerance allocation in more than one direction simultaneously. It is also shown how pre-existing constraints on some of the part dimensions can be represented and how situations can be identified where the required tolerance allocation is not achievable. A methodology is also presented that uses the same information to model a component with different amounts of dimensional variation to simulate the effects of tolerance stack-up. © 2014 Springer-Verlag France.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spin-1 model on a triangular lattice in the presence of a uniaxial anisotropy field using a cluster mean-field (CMF) approach. The interplay among antiferromagnetic exchange, lattice geometry, and anisotropy forces Gutzwiller mean-field approaches to fail in a certain region of the phase diagram. There, the CMF method yields two supersolid phases compatible with those present in the spin-1/2 XXZ model onto which the spin-1 system maps. Between these two supersolid phases, the three-sublattice order is broken and the results of the CMF approach depend heavily on the geometry and size of the cluster. We discuss the possible presence of a spin liquid in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bosons interacting repulsively on a lattice with a flat lowest band energy dispersion may, at sufficiently small filling factors, enter into a Wigner-crystal-like phase. This phase is a consequence of the dispersionless nature of the system, which in turn implies the occurrence of single-particle localized eigenstates. We investigate one of these systems-the sawtooth lattice-filled with strongly repulsive bosons at filling factors infinitesimally above the critical point where the crystal phase is no longer the ground state. We find, in the hard-core limit, that the crystal retains its structure in all but one of its cells, where it is broken. The broken cell corresponds to an exotic kind of repulsively bound state, which becomes delocalized. We investigate the excitation spectrum of the system analytically and find that the bound state behaves as a single particle hopping on an effective lattice with reduced periodicity, and is therefore gapless. Thus, the addition of a single particle to a flat-band system at critical filling is found to be enough to make kinetic behavior manifest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach to the modelling of passive intermodulation (PIM) generation in passive components with distributed weak nonlinearities is outlined. Based upon the formalism of X-parameters, it provides a unified framework for co-design of antenna beamforming networks, filters, combiners, phase shifters and other passive and active devices containing nonlinearities at RF front-end. The effects of discontinuities and complex circuit layouts can be efficiently evaluated with the aid of the equivalent networks of the canonical nonlinear elements. The main concepts are illustrated by examples of numerical simulations of PIM generation in the transmission lines and comparison with the measurement results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the estimation of parameters of a Bayesian network from incomplete data. The task is usually tackled by running the Expectation-Maximization (EM) algorithm several times in order to obtain a high log-likelihood estimate. We argue that choosing the maximum log-likelihood estimate (as well as the maximum penalized log-likelihood and the maximum a posteriori estimate) has severe drawbacks, being affected both by overfitting and model uncertainty. Two ideas are discussed to overcome these issues: a maximum entropy approach and a Bayesian model averaging approach. Both ideas can be easily applied on top of EM, while the entropy idea can be also implemented in a more sophisticated way, through a dedicated non-linear solver. A vast set of experiments shows that these ideas produce significantly better estimates and inferences than the traditional and widely used maximum (penalized) log-likelihood and maximum a posteriori estimates. In particular, if EM is adopted as optimization engine, the model averaging approach is the best performing one; its performance is matched by the entropy approach when implemented using the non-linear solver. The results suggest that the applicability of these ideas is immediate (they are easy to implement and to integrate in currently available inference engines) and that they constitute a better way to learn Bayesian network parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precise knowledge of the temperature of an ultracold lattice gas simulating a strongly correlated
system is a question of both fundamental and technological importance. Here, we address such
question by combining tools from quantum metrology together with the study of the quantum
correlations embedded in the system at finite temperatures. Within this frame we examine the spin-
1 2 XY chain, first estimating, by means of the quantum Fisher information, the lowest attainable
bound on the temperature precision. We then address the estimation of the temperature of the sample
from the analysis of correlations using a quantum non demolishing Faraday spectroscopy method.
Remarkably, our results show that the collective quantum correlations can become optimal
observables to accurately estimate the temperature of our model in a given range of temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital signatures are an important primitive for building secure systems and are used in most real-world security protocols. However, almost all popular signature schemes are either based on the factoring assumption (RSA) or the hardness of the discrete logarithm problem (DSA/ECDSA). In the case of classical cryptanalytic advances or progress on the development of quantum computers, the hardness of these closely related problems might be seriously weakened. A potential alternative approach is the construction of signature schemes based on the hardness of certain lattice problems that are assumed to be intractable by quantum computers. Due to significant research advancements in recent years, lattice-based schemes have now become practical and appear to be a very viable alternative to number-theoretic cryptography. In this article, we focus on recent developments and the current state of the art in lattice-based digital signatures and provide a comprehensive survey discussing signature schemes with respect to practicality. Additionally, we discuss future research areas that are essential for the continued development of lattice-based cryptography.