905 resultados para lab on a chip
Resumo:
In the clinical/microbiological laboratory there are currently several ways of separating specific cells from a fluid suspension. Conventionally cells can be separated based on size, density, electrical charge, light-scattering properties, and antigenic surface properties. Separating cells using these parameters can require complex technologies and specialist equipment. This paper proposes new Bio-MEMS (microelectromechanical systems) filtration chips manufactured using deep reactive ion etching (DRIE) technology that, when used in conjunction with an optical microscope and a syringe, can filter and grade cells for size without the requirement for additional expensive equipment. These chips also offer great versatility in terms of design and their low cost allows them to be disposable, eliminating sample contamination. The pumping mechanism, unlike many other current filtration techniques, leaves samples mechanically and chemically undamaged. In this paper the principles behind harnessing passive pumping are explored, modelled, and validated against empirical data, and their integration into a microfluidic device to separate cells from a mixed population suspension is described. The design, means of manufacture, and results from preliminary tests are also presented. © IMechE 2007.
Resumo:
Aim: To determine the theoretical and clinical minimum image pixel resolution and maximum compression appropriate for anterior eye image storage. Methods: Clinical images of the bulbar conjunctiva, palpebral conjunctiva, and corneal staining were taken at the maximum resolution of Nikon:CoolPix990 (2048 × 1360 pixels), DVC:1312C (1280 × 811), and JAI:CV-S3200 (767 × 569) single chip cameras and the JVC:KYF58 (767 × 569) three chip camera. The images were stored in TIFF format and further copies created with reduced resolution or compressed. The images were then ranked for clarity on a 15 inch monitor (resolution 1280 × 1024) by 20 optometrists and analysed by objective image analysis grading. Theoretical calculation of the resolution necessary to detect the smallest objects of clinical interest was also conducted. Results: Theoretical calculation suggested that the minimum resolution should be ≥579 horizontal pixels at 25 × magnification. Image quality was perceived subjectively as being reduced when the pixel resolution was lower than 767 × 569 (p<0.005) or the image was compressed as a BMP or <50% quality JPEG (p<0.005). Objective image analysis techniques were less susceptible to changes in image quality, particularly when using colour extraction techniques. Conclusion: It is appropriate to store anterior eye images at between 1280 × 811 and 767 × 569 pixel resolution and at up to 1:70 JPEG compression.
Resumo:
Mobile technology has not yet achieved widespread acceptance in the Architectural, Engineering, and Construction (AEC) industry. This paper presents work that is part of an ongoing research project focusing on the development of multimodal mobile applications for use in the AEC industry. This paper focuses specifically on a context-relevant lab-based evaluation of two input modalities – stylus and soft-keyboard v. speech-based input – for use with a mobile data collection application for concrete test technicians. The manner in which the evaluation was conducted as well as the results obtained are discussed in detail.
Resumo:
eLearning at universities is taking an increasingly larger part of academic teaching methodologies. In part this is caused by different pedagogical concepts behind interactive learning system, in part it is because of larger numbers of students that can be reached within one given course and, most important, actively integrated into the teaching process. We present here the development of a novel concept of teaching, allowing students to explore theoretical and experimental aspects of act of magnetic field on moving charge through real experiments and simulation. This problem is not only part of the basic education of physics students, but also element of the academic education of almost all engineers.
Resumo:
The controlled from distance teaching (DT) in the system of technical education has a row of features: complication of informative content, necessity of development of simulation models and trainers for conducting of practical and laboratory employments, conducting of knowledge diagnostics on the basis of mathematical-based algorithms, organization of execution collective projects of the applied setting. For development of the process of teaching bases of fundamental discipline control system Theory of automatic control (TAC) the combined approach of optimum combination of existent programmatic instruments of support was chosen DT and own developments. The system DT TAC included: controlled from distance course (DC) of TAC, site of virtual laboratory practical works in LAB.TAC and students knowledge remote diagnostic system d-tester.
Resumo:
Researchers have proposed that planting false memories could have positive behavioral consequences. The idea of deceptively planting “beneficial” false memories outside of the laboratory raises important ethical questions, but how might the general public appraise this moral dilemma? In two studies, participants from the USA and UK read about a fictional “false-memory therapy” that led people to adopt healthy behaviors. Participants then reported their attitudes toward the acceptability of this therapy, via scale-rating (both studies) and open-text (Study 2) responses. The data revealed highly divergent responses to this contentious issue, ranging from abject horror to unqualified enthusiasm. Moreover, the responses shed light on conditions that participants believed would make the therapy less or more ethical. Whether or not deceptively planting memories outside the lab could ever be justifiable, these studies add valuable evidence to scientific and societal debates on neuroethics, whose relevance to memory science is increasingly acute.
Resumo:
Since the mid-1990s, the United States has experienced a shortage of scientists and engineers, declining numbers of students choosing these fields as majors, and low student success and retention rates in these disciplines. Learning theorists, educational researchers, and practitioners believe that learning environments can be created so that an improvement in the numbers of students who complete courses successfully could be attained (Astin, 1993; Magolda & Terenzini, n.d.; O'Banion, 1997). Learning communities do this by providing high expectations, academic and social support, feedback during the entire educational process, and involvement with faculty, other students, and the institution (Ketcheson & Levine, 1999). ^ A program evaluation of an existing learning community of science, mathematics, and engineering majors was conducted to determine the extent to which the program met its goals and was effective from faculty and student perspectives. The program provided laptop computers, peer tutors, supplemental instruction with and without computer software, small class size, opportunities for contact with specialists in selected career fields, a resource library, and Peer-Led Team Learning. During the two years the project has existed, success, retention, and next-course continuation rates were higher than in traditional courses. Faculty and student interviews indicated there were many affective accomplishments as well. ^ Success and retention rates for one learning community class ( n = 27) and one traditional class (n = 61) in chemistry were collected and compared using Pearson chi square procedures ( p = .05). No statistically significant difference was found between the two groups. Data from an open-ended student survey about how specific elements of their course experiences contributed to success and persistence were analyzed by coding the responses and comparing the learning community and traditional classes. Substantial differences were found in their perceptions about the lecture, the lab, other supports used for the course, contact with other students, helping them reach their potential, and their recommendation about the course to others. Because of the limitation of small sample size, these differences are reported in descriptive terms. ^
Resumo:
The kaon electroproduction reaction H(e, e ′K+)Λ was studied as a function of the four momentum transfer, Q2, for different values of the virtual photon polarization parameter. Electrons and kaons were detected in coincidence in two High Resolution Spectrometers (HRS) at Jefferson Lab. Data were taken at electron beam energies ranging from 3.4006 to 5.7544 GeV. The kaons were identified using combined time of flight information and two Aerogel Čerenkov detectors used for particle identification. For different values of Q2 ranging from 1.90 to 2.35 GeV/c2 the center of mass cross sections for the Λ hyperon were determined for 20 kinematics and the longitudinal, σ L, and transverse, σT, terms were separated using the Rosenbluth separation technique. ^ Comparisons between available models and data have been studied. The comparison supports the t-channel dominance behavior for kaon electroproduction. All models seem to underpredict the transverse cross section. An estimate of the kaon form factor has been explored by determining the sensitivity of the separated cross sections to variations of the kaon EM form factor. From comparison between models and data we can conclude that interpreting the data using the Regge model is quite sensitive to a particular choice for the EM form factors. The data from the E98-108 experiment extends the range of the available kaon electroproduction cross section data to an unexplored region of Q2 where no separations have ever been performed. ^
Resumo:
This study compares the effects of cooperative delivery (CD) and individual delivery (ID) of integrated learning system (ILS) instruction in mathematics on achievement, attitudes and behaviors in adult (16-21 yrs.) high school students (grades 9-13). The study was conducted in an urban adult high school in Miami-Dade County Public Schools using a pre-test/post-test design. Achievement was measured using the Test of Adult Basic Education (TABE) by CTB MC-Graw-Hill and Compass Learning. An attitudinal survey measured attitudes towards mathematics, the computer-related lessons, and attitudes toward group activities. Behavior was assessed using computer lab observations. ^ Two-way analyses of variance (ANOVA) were conducted on achievement (TABE and Compass) by group and time (pre and post). A one-way ANOVA was conducted on the overall attitude by group on the five components (i.e., content mathematics, delivery/computers, cooperative, partners, and self efficacy) and a one-way ANOVA was conducted on the on-task behavior by group. ^ The results of the study revealed that CD and ID students working on mathematics activities delivered by the ILS performed similarly on achievement tests of the TABE. The CD-ILS students had significantly better overall mathematics attitudes than the ID-ILS students and the ID-ILS group was on-task significantly more than the CD-ILS group. This study concludes that regularity and period of time over which the ILS is used may prove to be important variables although there were insufficient data to fully investigate the impact of models of use. Additionally, a minimum amount of time-on-system is necessary before gains can become apparent in innumeracy and increasing exposure to the system may have beneficial effects on learning. ^
Resumo:
Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10μm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ∼18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 μs with a low power consumption of ∼11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.
Resumo:
Fueled by increasing human appetite for high computing performance, semiconductor technology has now marched into the deep sub-micron era. As transistor size keeps shrinking, more and more transistors are integrated into a single chip. This has increased tremendously the power consumption and heat generation of IC chips. The rapidly growing heat dissipation greatly increases the packaging/cooling costs, and adversely affects the performance and reliability of a computing system. In addition, it also reduces the processor's life span and may even crash the entire computing system. Therefore, dynamic thermal management (DTM) is becoming a critical problem in modern computer system design. Extensive theoretical research has been conducted to study the DTM problem. However, most of them are based on theoretically idealized assumptions or simplified models. While these models and assumptions help to greatly simplify a complex problem and make it theoretically manageable, practical computer systems and applications must deal with many practical factors and details beyond these models or assumptions. The goal of our research was to develop a test platform that can be used to validate theoretical results on DTM under well-controlled conditions, to identify the limitations of existing theoretical results, and also to develop new and practical DTM techniques. This dissertation details the background and our research efforts in this endeavor. Specifically, in our research, we first developed a customized test platform based on an Intel desktop. We then tested a number of related theoretical works and examined their limitations under the practical hardware environment. With these limitations in mind, we developed a new reactive thermal management algorithm for single-core computing systems to optimize the throughput under a peak temperature constraint. We further extended our research to a multicore platform and developed an effective proactive DTM technique for throughput maximization on multicore processor based on task migration and dynamic voltage frequency scaling technique. The significance of our research lies in the fact that our research complements the current extensive theoretical research in dealing with increasingly critical thermal problems and enabling the continuous evolution of high performance computing systems.
Resumo:
Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10µm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ~18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 us with a low power consumption of ~11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.
Resumo:
It has been found in research that children and adults with anxiety have a bias toward interpreting ambiguous situations as threatening. This bias is thought to consequently maintain many symptoms of anxiety. An emergent computer treatment system called Attention Bias Modification Training (ABMT) has been used to try to reduce this bias. It is essential to understand whether this bias can be reduced with ABMT because of its feasibility and cost effective nature of treatment. In the current study, interpretation bias is measured using the Children's Opinions of Everyday Life Events (COELE). The ABMT treatment is given to children once a week for an hour and their answers to the COELE are recorded before and after treatment. The recorded procedures are transcribed by undergraduate students working at the Child Anxiety and Phobia lab, and then scored. Each of the situations of the COELE are rated 0 being neutral or 1 threatening interpretation of the situation. The hypothesis is that ABMT will reduce the negative interpretation bias in children over the course of 4 weeks of treatment. The study is still in the collection and transcription of data phase, and will expect to have analytical conclusions in the start of spring 2015.
Resumo:
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short-term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well-established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2-adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment "high light" did not reveal such genetic divergence whereas growth in a low-salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.
Resumo:
The Tara Oceans Expedition (2009-2013) was a global survey of ocean ecosystems aboard the Sailing Vessel Tara. It carried out extensive measurements of evironmental conditions and collected plankton (viruses, bacteria, protists and metazoans) for later analysis using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter that were measured from discrete water samples collected with Niskin bottles during the 2009-2013 Tara Oceans expedition. Properties include pigment concentrations from HPLC analysis (10 depths per vertical profile, 25 pigments per depth), the carbonate system (Surface and 400m; pH (total scale), CO2, pCO2, fCO2, HCO3, CO3, Total alkalinity, Total carbon, OmegaAragonite, OmegaCalcite, and dosage Flags), nutrients (10 depths per vertical profile; NO2, PO4, N02/NO3, SI, quality Flags), DOC, CDOM, and dissolved oxygen isotopes. The Service National d'Analyse des Paramètres Océaniques du CO2, at the Université Pierre et Marie Curie, determined CT and AT potentiometrically. More than 200 vertical profiles of these properties were made across the world ocean. DOC, CDOM and dissolved oxygen isotopes are available only for the Arctic Ocean and Arctic Seas (2013).