988 resultados para kinase inhibitors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This study aims to investigate the efficacy of tumor necrosis factor-alpha blockers such as infliximab, etanercept, and adalimumab in the treatment of ankylosing spondylitis. Patients and methods: The outcome of tumor necrosis factor-alpha blocker treatment was analyzed retrospectively in 59 patients with ankylosing spondylitis who were being treated in our clinic during last nine years. The patients' Assessment of SpondyloArthritis International Society (ASAS) 20 and ASAS 40 response rates, adverse drugs effects, and treatment compliance were evaluated. Results: ASAS 20 response was achieved by 89.8% of the patients in the third month, and by 93.2% in the sixth month. ASAS 40 response was achieved by 61% of the patients in the third and sixth month. No statistically significant difference was detected between the three tumor necrosis factor-alpha blockers with regards to the ASAS 40 response rates. Mild infections, observed in 31 of the patients, were the most common side effects. Serious side effect was observed in only one patient. The number of patients who withdrew from the treatment for various reasons was six.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are few clinical data on the combination abacavir/lamivudine plus raltegravir. We compared the outcomes of patients from the SPIRAL trial receiving either abacavir/lamivudine or tenofovir/emtricitabine at baseline who had taken at least one dose of either raltegravir or ritonavir-boosted protease inhibitors. For the purpose of this analysis, treatment failure was defined as virological failure (confirmed HIV-1 RNA ≥50 copies/ml) or discontinuation of abacavir/lamivudine or tenofovir/emtricitabine because of adverse events, consent withdrawal, or lost to follow-up. There were 143 (72.59%) patients with tenofovir/emtricitabine and 54 (27.41%) with abacavir/lamivudine. In the raltegravir group, there were three (11.11%) treatment failures with abacavir/lamivudine and eight (10.96%) with tenofovir/emtricitabine (estimated difference 0.15%; 95% CI -17.90 to 11.6). In the ritonavir-boosted protease inhibitor group, there were four (14.81%) treatment failures with abacavir/lamivudine and 12 (17.14%) with tenofovir/emtricitabine (estimated difference -2.33%; 95% CI -16.10 to 16.70). Triglycerides decreased and HDL cholesterol increased through the study more pronouncedly with abacavir/lamivudine than with tenofovir/emtricitabine and differences in the total-to-HDL cholesterol ratio between both combinations of nucleoside reverse transcriptase inhibitors (NRTIs) tended to be higher in the raltegravir group, although differences at 48 weeks were not significant. While no patient discontinued abacavir/lamivudine due to adverse events, four (2.80%) patients (all in the ritonavir-boosted protease inhibitor group) discontinued tenofovir/emtricitabine because of adverse events (p=0.2744). The results of this analysis do not suggest that outcomes of abacavir/lamivudine are worse than those of tenofovir/emtricitabine when combined with raltegravir in virologically suppressed HIV-infected adults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'arthrose est une maladie dégénérative des articulations due à une dégradation progressive du cartilage. La calcification de l'articulation (essentiellement due à des dépôts de cristaux de phosphate de calcium basique -cristaux BCP-) est une caractéristique de cette maladie. Cependant, le rôle des cristaux BCP reste à déterminer. Nous avons tout d'abord déterminé en utilisant des cultures primaires de chondrocytes que les cristaux de BCP induisaient la production de la cytokine IL-6, via une signalisation intracellulaire implicant les kinase Syk, PI3 et Jak et Stat3. Les cristaux de BCP induisent également la perte de protéoglycanes et l'expression de IL-6 dans des explants de cartlage humain et ces deux effets peuvent être bloqués par un inhibiteur de IL-6, le Tocilizumab. Par ailleurs, nous avons trouvé que l'IL-6 ajouté à des chondrocytes, favorisait la formation de cristax de BCP et augmentait l'expression de gènes impliqués dans le processus de minéralisation : Ank (codant pour un transporteur de pyrophooshate), Annexin5 (codant pour un canal calcique) et Pit-1 (codant pour un transporteur de phoshate). In vivo, les cristaux de BCP injectés dans l'articulation de souris induisent une érosion du cartilage. Dans un modèle murin d'arthrose du genou induit par ménisectomie, nous avons observé la formation progressive de cristaux de BCP. Fait intéressant, la présence de ces cristaux dans l'articulation précédait la destruction du cartilage. Un agent susceptible de bloquer les calcifications tel que le sodium thiosulfate (STS), administré à des souris ménisectomisées, inhibait le dépôt intra-articulaire de ces cristaux ainsi que l'érosion du cartilage. Nous avons identifié ainsi un cercle vicieux dans l'arthrose, les cristaux induisant l'interleukine-6 et l'interleukine-6 induisant la formation de ces cristaux. Nous avons étudié si on pouvait bloquer cette boucle cristaux de BCP-IL6 soit par des agents décalcifiants, soit par des inhibiteurs d'IL-6. In vitro, des anticorps anti IL- 6 ou des inhibiteurs de signalisation, inhibaient significativement IL-6 et la minéralisation induite par IL-6. De même le STS inhibait la formation de ces cristaux et la production de l'IL-6. Tout récemment, nous avons trouvé que des inhibiteurs de la xanthine oxidoréductase étaient aussi capables d'inhiber à la fois la production d'IL-6 et la minéralization des chondrocytes. Finalement, nous avons pu exclure un rôle du système IL-1 dans le modèle d'arthrose induite par ménisectomie, les souris déficientes pour IL-1a/ß, MyD88 et l'inflammasome NLRP3 n'étant pas protégées dans ce modèle d'arthrose. L'ensemble de nos résultats montre que les cristaux BCP sont pathogéniques dans l'arthrose et qu'un inhibiteur de minéralisation tel que le STS ou un inhibiteur de l'interleukine-6 constitueraient des nouvelles thérapies pour l'arthrose. -- Osteoarthritis (OA), the most common degenerative disorder of the joints, results from an imbalance between the breakdown and repair of the cartilage and surrounding articular structures. Joint calcification (essentially due to basic calcium phosphate (BCP) crystal deposition) is a characteristic feature of OA. However, the role of BCP crystal deposition in the pathogenesis of OA remains unclear[1][1]. We first demonstrated that in primary murine chondrocytes exogenous BCP crystals led to IL-6 up-modulation and that BCP crystal signaling pathways involved Syk and PI3 kinases, and also gp130 associated molecules, Jak2 and Stat3. BCP crystals also induced proteoglycan loss and IL-6 expression in human cartilage expiants, (which were significantly reduced by an IL-6 inhibitor). In addition, we found that in chondrocytes exogenous IL-6 promoted calcium-containing crystal formation and up- regulation of genes codifying for proteins involved in the calcification process: the inorganic pyrophosphate transport channel Ank, the calcium channel Annexinö and the sodium/phosphate cotransporter Piti. In vivo, BCP crystals injected into murine knee joints induced cartilage erosion. In the menisectomy model, increasing deposits, identified as BCP crystals, were progressively observed around the joint before cartilage erosion. These deposits strongly correlated with cartilage degradation and IL-6 expression. These results demonstrated that BCP crystals deposition and IL-6 production are mutually reinforcing in the osteoarthritic pathogenic process. We then investigated if we could block the BCP-IL6 loop by either targeting IL-6 production or BCP crystal deposits. Treatment of chondrocytes with anti-IL-6 antibodies or inhibitors of IL-6- signaling pathway significantly inhibited IL-6-induced crystal formation. Similarly, sodium thiosulfate (STS), a well-known systemic calcification inhibitor, decreased crystal deposition as well as HA-induced IL-6 secretion in chondrocytes and, in vivo, it decreased crystal deposits size and cartilage erosion in menisectomized knees. Interestingly, we also found that xanthine-oxidoreductase (XO) inhibitors inhibited both IL-6 production and calcium crystal depositis in chondrocytes. We began to unravel the mechanisms involved in this coordinate modulation of IL-6 and mineralization. STS inhibited Reactive Oxygen Species (ROS) generation and we are currently investigating whether XO represents a major source of ROS in chondrocyte mineralization. Finally, we ruled out that IL-1 activation/signaling plays a role in the murine model of OA induced by menisectomy, as IL-1a/ß, the IL-1 R associated molecule MyD88 and NLRP3 inflammasome deficient mice were not protected in this model of OA. Moreover TLR-1, -2, -4,-6 deficient mice had a phenotype similar to that of wild-type mice. Altogether our results demonstrated a self-amplification loop between BCP crystals deposition and IL-6 production, which represents an aggravating process in OA pathogenesis. As currently prescribed OA drugs are addressing OA symptoms,our results highlight a potential novel treatment strategy whereby inhibitors of calcium- containing crystal formation and IL-6 could be combined to form the basis of a disease modifying treatment and alter the course of OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endodermis is a highly conserved cell layer present in the root of all vascular plants, except Lycophytes. This tissue layer establishes a protective diffusion barrier surrounding the vasculature and is expected to prevent passive, uncontrolled flow of nutrients through the root. This barrier property is achieved by the production of Casparian strips (CS), a localized cell wall impregnation of lignin in the anticlinal walls of each endodermal cell, forming a belt-like structure sealing the extracellular space. The CS act as a selective barrier between the external cell layers and the vascular cylinder and are thought to be important in many aspects of root function. For instance, selective nutrient uptake and sequestration from the soil, resistance to different abiotic and biotic stresses are expected to involve functional CS. Although discovered 150 years ago, nothing was known about the genes involved in CS establishment until recently. The use of the model plant Arabidopsis thaliana together with both reverse and forward genetic approaches led to the discovery of an increasing number of genes involved in different steps of CS formation during the last few years. One of these genes encodes SCHENGEN3 (SGN3), a leucine-rich repeat receptor-like kinase (LRR-RLK). SGN3 was discovered first by reverse genetic due to its endodermis-enriched expression, and the corresponding mutant displays strong endodermal permeability of the apoplastic tracer Propidium Iodide (PI) indicative of defective CS. One aim of this thesis is to study the role of SGN3 at the molecular level in order to understand its involvement in establishing an impermeable CS. The endodermal permeability of sgn3 is shown to be the result of incorrect localization of key proteins involved in CS establishment (the "Casparian strip domain proteins", CASPs), leading to non-functional CS interrupted by discontinuities. CASPs localize in the plasma membrane domain subjacent to the CS, named the Casparian Strip membrane Domain (CSD). The CSD discontinuities in sgn3 together with SGN3 localization in close proximity to the CASPs lead to the assumption that SGN3 is involved in the formation of a continuous CSD. In addition, SGN3 might have a second role, acting as a kinase reporting CSD integrity leading to lignin and suberin production in CSD/CS defective plants. Up to now, sgn3 is the strongest and most specific CS mutant available, displaying tracer penetration along the whole length of the seedling root. For this reason, this mutant is well suited in order to characterize the physiological behaviour of CS affected plants. Due to the lack of such mutants in the past, it was not possible to test the presumed functions of CS by using plants lacking this structure. We decided to use sgn3 for this purpose. Surprisingly, sgn3 overall growth is only slightly affected. Nevertheless, processes expected to rely on functional CS, such as water transport through the root, nutrient homeostasis, salt tolerance and resistance to an excess of some nutrients are altered in this mutant. On the other hand, homeostasis for most elements and drought tolerance are not affected in sgn3. It is surprising to observe that homeostatic defects are specific, with a decrease in potassium and an increase in magnesium levels. It indicates a backup system, set up by the plant in order to counteract free diffusion of nutrients into the stele. For instance, potassium shortage in sgn3 upregulates the transcription of potassium influx transport proteins and genes known to be induced by potassium starvation. Moreover, sgn3 mutant is hypersensitive to low potassium conditions. Hopefully, these results about SGN3 will help our understanding of CS establishment at the molecular level. In addition, physiological experiments using sgn3 should give us a framework for future experiments and help us to understand the different roles of CS and their involvement during nutrient radial transport through the root. -- L'endoderme est un tissu présent dans les racines de toutes les plantes vasculaires à l'exception des Lycophytes. Ce tissu établit une barrière protectrice entourant les tissus vasculaires dans le but d'éviter la diffusion passive et incontrôlée des nutriments au travers de la racine. Cette propriété de barrière provient de la production des cadres de Caspary, une imprégnation localisée de lignine des parties anticlinales de la paroi de chaque cellule d'endoderme. Cela donne naissance à un anneau/cadre qui rend étanche l'espace extracellulaire. Les cadres de Caspary agissent comme une barrière sélective entre les couches externes de la racine et le cylindre central et sont supposés être importants dans beaucoup d'aspects du fonctionnement de la racine. Par exemple, l'absorption sélective de nutriments et leur séquestration à partir du sol ainsi que la résistance contre différents stress abiotiques et biotiques sont supposés impliquer des cadres de Caspary fonctionnels. Bien que découverts il y a 150 ans, rien n'était connu concernant les gènes impliqués dans Ja formation des cadres de Caspary jusqu'à récemment. Durant ces dernière années, l'utilisation de la plante modèle Arabidopsis thaliana ainsi que des approches de génétique inverse et classique ont permis la découverte d'un nombre croissant de gènes impliqués à différentes étapes de la formation de cette structure. Un des ces gènes code pour SCHENGEN3 (SGN3), un récepteur kinase "leucine-rich repeat receptor-like kinase" (LRR-RLK). SGN3 a été découvert en premier par génétique inverse grâce à son expression enrichie dans l'endoderme. Les cadres de Caspary ne sont pas fonctionnels dans le mutant correspondant, ce qui est visible à cause de la perméabilité de l'endoderme au traceur apoplastique Propidium Iodide (PI). Un des objectifs de cette thèse est d'étudier la fonction de SGN3 au niveau moléculaire dans le but de comprendre son rôle dans la formation des cadres de Caspary. J'ai pu démontrer que la perméabilité de l'endoderme du mutant sgn3 est le résultat de la localisation incorrecte de protéines impliquées dans la formation des cadres de Caspary, les "Casparian strip domain proteins" (CASPs). Cela induit des cadres de Caspary non fonctionnels, contenant de nombreuses interruptions. Les CASPs sont localisés à la membrane plasmique dans un domaine sous-jacent les cadres de Caspary appelé Casparian Strip membrane Domain (CSD). Les interruptions du CSD dans le mutant sgn3, ainsi que la localisation de SGN3 à proximité des CASPs nous font penser à un rôle de SGN3 dans l'élaboration d'un CSD ininterrompu. De plus, SGN3 pourrait avoir un second rôle, agissant en tant que kinase reportant l'intégrité du CSD et induisant la production de lignine et de subérine dans des plantes contenant des cadres de Caspary non fonctionnels. Jusqu'à ce jour, sgn3 est le mutant en notre possession le plus fort et le plus spécifique, ayant un endoderme perméable tout le long de la racine. Pour cette raison, ce mutant est adéquat dans le but de caractériser la physiologie de plantes ayant des cadres de Caspary affectés. De manière surprenante, la croissance de sgn3 est seulement peu affectée. Néanmoins, des processus censés nécessiter des cadres de Caspary fonctionnels, comme le transport de l'eau au travers de la racine, l'homéostasie des nutriments, la tolérance au sel et la résistance à l'excès de certains nutriments sont altérés dans ce mutant. Malgré tout, l'homéostasie de la plupart des nutriments ainsi que la résistance au stress hydrique ne sont pas affectés dans sgn3. De manière surprenante, les altérations de l'ionome de sgn3 sont spécifiques, avec une diminution de potassium et un excès de magnésium. Cela implique un système de compensation établi par la plante dans le but d'éviter la diffusion passive des nutriments en direction du cylindre central. Par exemple, le manque de potassium dans sgn3 augmente la transcription de transporteurs permettant l'absorption de cet élément. De plus, des gènes connus pour être induits en cas de carence en potassium sont surexprimés dans sgn3 et la croissance de ce mutant est sévèrement affectée dans un substrat pauvre en potassium. Ces résultats concernant SGN3 vont, espérons-le, aider à la compréhension du processus de formation des cadres de Caspary au niveau moléculaire. De plus, les expériences de physiologie utilisant sgn3 présentées dans cette thèse devraient nous donner une base pour des expériences futures et nous permettre de comprendre mieux le rôle des cadres de Caspary, et plus particulièrement leur implication dans le transport radial des nutriments au travers de la racine. -- Les plantes terrestres sont des organismes puisant l'eau et les nutriments dont elles ont besoin pour leur croissance dans le sol grâce à leurs racines. De par leur immobilité, elles doivent s'adapter à des sols contenant des quantités variables de nutriments et il leur est crucial de sélectionner ce dont elles ont besoin afin de ne pas s'intoxiquer. Cette sélection est faite grâce à un filtre formé d'un tissu racinaire interne appelé endoderme. L'endoderme fabrique une barrière imperméable entourant chaque cellule appelée "cadre de Caspary". Ces cadres de Caspary empêchent le libre passage des nutriments, permettant un contrôle précis de leur passage. De plus, ils sont censés permettre de résister contre différents stress environnementaux comme la sécheresse, la salinité du sol ou l'excès de nutriments. Bien que découverts il y a 150 ans, rien n'était connu concernant les gènes impliqués dans la formation des cadres de Caspary jusqu'à récemment. Durant ces dernière années, l'utilisation de la plante modèle Arabidopsis thaliana a permis la découverte d'un nombre croissant de gènes impliqués à différentes étapes de la formation de cette structure. Un de ces gènes code pour SCHENGEN3 (SGN3), un récepteur kinase "leucine-rich repeat receptor-like kinase" (LRR- RLK). Nous montrons dans cette étude que le gène SGN3 est impliqué dans la formation des cadres de Caspary, et que le mutant correspondant sgn3 a des cadres de Caspary interrompus. Ces interruptions rendent l'endoderme perméable, l'empêchant de bloquer le passage des molécules depuis le sol vers le centre de la racine. En utilisant ce mutant, nous avons pu caractériser la physiologie de plantes ayant des cadres de Caspary affectés. Cela a permis de découvrir que le transport de l'eau au travers de la racine était affecté dans le mutant sgn3. De plus, l'accumulation de certains éléments dans les feuilles de ce mutant est altérée. Nous avons également pu montrer une sensibilité de ce mutant à un excès de sel ou de certains nutriments comme le fer et le manganèse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Gastrointestinal stromal tumor (GIST) has been considered radiation-resistant, and radiotherapy is recommended only for palliation of bone metastases in current treatment guidelines. No registered prospective trial has evaluated GIST responsiveness to radiotherapy. PATIENTS AND METHODS: Patients with GIST progressing at intra-abdominal sites or the liver were entered to this prospective Phase II multicenter study (identifier NCT00515931). Metastases were treated with external beam radiotherapy using either conformal 3D planning or intensity modulated radiotherapy and conventional fractionation to a cumulative planning target volume dose of approximately 40Gy. Systemic therapy was maintained unaltered during the study. RESULTS: Of the 25 patients entered, 19 were on concomitant tyrosine kinase inhibitor therapy, most often imatinib. Two (8%) patients achieved partial remission, 20 (80%) had stable target lesion size for ⩾3months after radiotherapy with a median duration of stabilization of 16months, and 3 (12%) progressed. The median time to radiotherapy target lesion progression was 4-fold longer than the median time to GIST progression at any site (16 versus 4months). Radiotherapy was generally well tolerated. CONCLUSIONS: Responses to radiotherapy were infrequent, but most patients had durable stabilization of the target lesions. GIST patients with soft tissue metastases benefit frequently from radiotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)2 (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)2 (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Direct-acting antiviral agents (DAAs) have become the standard of care for the treatment of chronic hepatitis C virus (HCV) infection. We aimed to assess treatment uptake and efficacy in routine clinical settings among HIV/HCV coinfected patients after the introduction of the first generation DAAs. METHODS: Data on all Swiss HIV Cohort Study (SHCS) participants starting HCV protease inhibitor (PI) treatment between September 2011 and August 2013 were collected prospectively. The uptake and efficacy of HCV therapy were compared with those in the time period before the availability of PIs. RESULTS: Upon approval of PI treatment in Switzerland in September 2011, 516 SHCS participants had chronic HCV genotype 1 infection. Of these, 57 (11%) started HCV treatment during the following 2 years with either telaprevir, faldaprevir or boceprevir. Twenty-seven (47%) patients were treatment-naïve, nine (16%) were patients with relapse and 21 (37%) were partial or null responders. Twenty-nine (57%) had advanced fibrosis and 15 (29%) had cirrhosis. End-of-treatment virological response was 84% in treatment-naïve patients, 88% in patients with relapse and 62% in previous nonresponders. Sustained virological response was 78%, 86% and 40% in treatment-naïve patients, patients with relapse and nonresponders, respectively. Treatment uptake was similar before (3.8 per 100 patient-years) and after (6.1 per 100 patient-years) the introduction of PIs, while treatment efficacy increased considerably after the introduction of PIs. CONCLUSIONS: The introduction of PI-based HCV treatment in HIV/HCV-coinfected patients improved virological response rates, while treatment uptake remained low. Therefore, the introduction of PIs into the clinical routine was beneficial at the individual level, but had only a modest effect on the burden of HCV infection at the population level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lumbo-sacral chordoma is a rare, slow-growing tumor, arising from embryonic nothocordal remnants. Wide en bloc excision with clear margins remains mandatory to achieve satisfactory recurrence rates and disease-free survival. No chemotherapy has been demonstrated to be effective and radiotherapy is only marginally effective. Tyrosine kinase receptor inhibitors have showed encouraging results in locally advanced and metastatic chordoma. Reconstructive surgery may become very complex. Multidisciplinary approach in tertiary hospitals is always necessary. J. Surg. Oncol. 2015; 112:544-554. © 2015 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Division site positioning is critical for both symmetric and asymmetric cell divisions. In many organisms, positive and negative signals cooperate to position the contractile actin ring for cytokinesis. In rod-shaped fission yeast Schizosaccharomyces pombe cells, division at midcell is achieved through positive Mid1/anillin-dependent signaling emanating from the central nucleus and negative signals from the dual-specificity tyrosine phosphorylation-regulated kinase family kinase Pom1 at the cell poles. In this study, we show that Pom1 directly phosphorylates the F-BAR protein Cdc15, a central component of the cytokinetic ring. Pom1-dependent phosphorylation blocks Cdc15 binding to paxillin Pxl1 and C2 domain protein Fic1 and enhances Cdc15 dynamics. This promotes ring sliding from cell poles, which prevents septum assembly at the ends of cells with a displaced nucleus or lacking Mid1. Pom1 also slows down ring constriction. These results indicate that a strong negative signal from the Pom1 kinase at cell poles converts Cdc15 to its closed state, destabilizes the actomyosin ring, and thus promotes medial septation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotypephenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expressionof mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results: We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1¿171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 ¿M, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions: At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In ∼5% of advanced NSCLC tumours, ALK tyrosine kinase is constitutively activated after translocation of ALK. ALK+ NSCLC was shown to be highly sensitive to the first approved ALK inhibitor, crizotinib. However, all pts eventually relapse on crizotinib mainly due to secondary ALK mutations/amplification or CNS metastases. Alectinib is a highly selective, potent, oral next-generation ALK inhibitor. Clinical phase II alectinib data in 46 crizotinib-naïve pts with ALK+ NSCLC reported an objective response rate (ORR) of 93.5% and a 1-year progression-free rate of 83% (95% CI: 68-92) (Inoue et al. J Thorac Oncol 2013). CNS activity was seen: of 14 pts with baseline brain metastasis, 11 had prior CNS radiation, 9 of these experienced CNS and systemic PFS of >12 months; of the 3 pts without prior CNS radiation, 2 were >15 months progression free. Trial design: Randomised, multicentre, phase III, open-label study in pts with treatment-naïve ALK+ advanced, recurrent, or metastatic NSCLC. All pts must provide pretreatment tumour tissue to confirm ALK rearrangement (by IHC). Pts (∼286 from ∼180 centres, ∼30 countries worldwide) will be randomised to alectinib (600mg oral bid, with food) or crizotinib (250mg oral bid, with/without food) until disease progression (PD), unacceptable toxicity, withdrawal of consent, or death. Stratification factors are: ECOG PS (0/1 vs 2), race (Asian vs non-Asian), baseline CNS metastases (yes vs no). Primary endpoint: PFS by investigators (RECIST v1.1). Secondary endpoints: PFS by Independent Review Committee (IRC); ORR; duration of response; OS; safety; pharmacokinetics; quality of life. Additionally, time to CNS progression will be evaluated (MRI) for the first time in a prospective randomised NSCLC trial as a secondary endpoint. Pts with isolated asymptomatic CNS progression will be allowed to continue treatment beyond documented progression until systemic PD and/or symptomatic CNS progression, according to investigator opinion. Time to CNS progression will be retrospectively assessed by the IRC using two separate criteria, RECIST and RANO. Further details: ClinicalTrials.gov (NCT02075840). Disclosure: T.S.K. Mok: Advisory boards: AZ, Roche, Eli Lilly, Merck Serono, Eisai, BMS, AVEO, Pfizer, Taiho, Boehringer Ingelheim, Novartis, GSK Biologicals, Clovis Oncology, Amgen, Janssen, BioMarin; board of directors: IASLC; corporate sponsored research: AZ; M. Perol: Advisory boards: Roche; S.I. Ou: Consulting: Pfizer, Chugai, Genentech Speaker Bureau: Pfizer, Genentech, Boehringer Ingelheim; I. Bara: Employee: F. Hoffmann-La Roche Ltd; V. Henschel: Employee and stock: F. Hoffmann-La Roche Ltd.; D.R. Camidge: Honoraria: Roche/Genentech. All other authors have declared no conflicts of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) as an attractive target for anticancer therapy in 2003, the search for inhibitors has been intensely pursued both in academia and in pharmaceutical companies. Many novel IDO1 inhibitor scaffolds have been described, and a few potent compounds have entered clinical trials. However, a significant number of the reported compounds contain problematic functional groups, suggesting that enzyme inhibition could be the result of undesirable side reactions instead of selective binding to IDO1. Here, we describe issues in the employed experimental protocols, review and classify reported IDO1 inhibitors, and suggest different approaches for confirming viable inhibitor scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy.