994 resultados para isotope 13C


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon isotopic records of nutrient-depleted surface water place constraints on the past fertility of the oceans and on past atmospheric pCO2 levels. The best records of nutrient-depleted delta13C are obtained from planktonic foraminifera living in the thick mixed layers of the western equatorial and tropical Atlantic Ocean. We have produced a composite, stacked Globigerinoides sacculifer delta13C record from the equatorial Atlantic, which exhibits significant spectral power at the 100,000- and 41,000-year Milankovitch periods, but no power at the 23,000-year period. Similar to the record presented by Shackleton and Pisias [1985], surface-deep ocean Delta delta13C produced with the G. sacculifer record leads the delta18O ice volume record. However, the glacial-interglacial amplitudes of Delta delta13C differ between our record and Shackleton and Pisias [1985] record. Although large changes in Delta delta13C occur in the equatorial Atlantic during early stages of the last three glacial cycles, surface-deep Delta delta13C at glacial maxima (18O stage 2, late stage 6, and late stage 8) was only about 0.2? greater than during the subsequent interglacial. Our results imply that nutrient-driven pCO2 changes account for about one third of the pCO2 decrease observed in ice cores, and consequently, Delta delta13C should not be used as a proxy pCO2 index. Enough variance in the ice core pCO2 records remains to be explained that conclusions about pCO2 and ice volume phase relationships should also be reexamined. As much as 40 ppm pCO2 change still has not been accounted for by models of past physics and chemistry of the ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent sediment cores of the western Baltic Sea were analyzed for heavy metal and carbon isotope contents. The sedimentation rate was determined from radiocarbon dates to be 1.4 mm/yr. The 'recent age' of the sediment was about 850 yr. Within the upper 20 cm of sediment, certain heavy metals became increasingly enriched towards the surface; Cd, Pb, Zn and Cu increased 7-, 4-, 3- and 2-fold, respectively, whereas Fe, Mn, Ni and Co remained unchanged. Simultaneously, the radiocarbon content decreased by about 14 per cent. The enrichment in heavy metals as well as the decrease in the 14C-concentration during the last 130 ± 30yr parallels industrial growth as reflected in European fossil fuel consumption within that same period of time. The near-surface sediments are affected by residues released from fossil fuels at the rate of about 30 g/m**2 yr for the past two decades. The residues have a pronounced effect on the heavy metal and carbon isotope composition of the most Recent sediments allowing estimates to be made for sedimentation, erosion and heavy metal pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oceans at the time of the Cenomanian-Turonian transition were abruptly perturbed by a period of bottom-water anoxia. This led to the brief but widespread deposition of black organic-rich shales, such as the Livello Bonarelli in the Umbria-Marche Basin (Italy). Despite intensive studies, the origin and exact timing of this event are still debated. In this study, we assess leading hypotheses about the inception of oceanic anoxia in the Late Cretaceous greenhouse world, by providing a 6-Myr-long astronomically-tuned timescale across the Cenomanian-Turonian boundary. We procure insights in the relationship between orbital forcing and the Late Cretaceous carbon cycle by deciphering the imprint of astronomical cycles on lithologic, geophysical, and stable isotope records, obtained from the Bottaccione, Contessa and Furlo sections in the Umbria-Marche Basin. The deposition of black shales and cherts, as well as the onset of oceanic anoxia, is related to maxima in the 405-kyr cycle of eccentricity-modulated precession. Correlation to radioisotopic ages from the Western Interior (USA) provides unprecedented age control for the studied Italian successions. The most likely tuned age for the Livello Bonarelli base is 94.17 ± 0.15 Ma (tuning #1); however, a 405-kyr older age cannot be excluded (tuning #2) due to uncertainties in stratigraphic correlation, radioisotopic dating, and orbital configuration. Our cyclostratigraphic framework suggests that the exact timing of major carbon cycle perturbations during the Cretaceous may be linked to increased variability in seasonality (i.e. a 405-kyr eccentricity maximum) after the prolonged avoidance of seasonal extremes (i.e. a 2.4-Myr eccentricity minimum). Volcanism is probably the ultimate driver of oceanic anoxia, but orbital periodicities determine the exact timing of carbon cycle perturbations in the Late Cretaceous. This unites two leading hypotheses about the inception of oceanic anoxia in the Late Cretaceous greenhouse world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oceanic nutrient cycling in the Southern Ocean is supposed to have an important impact on glacial-interglacial atmospheric CO2 changes and global climate. In order to characterize such nutrient cycling over the last two climatic cycles we investigated carbon and nitrogen isotopic ratios of diatom-bound organic matter (d13Cdiat and d15Ndiat, respectively) in two cores retrieved form the Atlantic and Indian sectors of the Antarctic Ocean. The two cores show the same isotopic patterns. The d13Cdiat values are depleted during glacial periods and enriched during interglacial periods, indicating lower productivity during cold times. The d15Ndiat values are enriched during glacial periods and depleted during interglacial periods, arguing for greater nitrate utilization during cold times. Taken at face value, this apparent contradiction leads to opposite conclusions on the role of the Southern Ocean biological pump on the atmospheric CO2 changes. However, the two sets of data can be reconciled by a "sea ice plus mixing rate scenario" that calls upon a balance between the effect of cutting off gas transfer at the ocean-atmosphere boundary and the effect of reducing vertical transport of nutrients through the pycnocline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antarctic meiofauna is still strongly understud- ied, and so is its trophic position in the food web. Primary producers, such as phytoplankton, and bacteria may repre- sent important food sources for shallow water metazoans, and the role of meiobenthos in the benthic-pelagic coupling represents an important brick for food web understanding. In a laboratory, feeding experiment 13C-labeled freeze- dried diatoms (Thalassiosira weissflogii) and bacteria were added to retrieved cores from Potter Cove (15-m depth, November 2007) in order to investigate the uptake of 3 main meiofauna taxa: nematodes, copepods and cumaceans. In the surface sediment layers, nematodes showed no real difference in uptake of both food sources. This outcome was supported by the natural delta 13C values and the community genus composition. In the first centimeter layer, the dominant genus was Daptonema which is known to be opportunistic, feeding on both bacteria and diatoms. Copepods and cumaceans on the other hand appeared to feed more on diatoms than on bacteria. This may point at a better adaptation to input of primary production from the water column. On the other hand, the overall carbon uptake of the given food sources was quite low for all taxa, indicating that likely other food sources might be of relevance for these meiobenthic organisms. Further studies are needed in order to better quantify the carbon requirements of these organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interglacial known as Marine Isotope Stage 11 has been proposed to be analogous to the Holocene, owing to similarities in the amplitudes of orbital forcing. It has been difficult to compare the periods, however, because of the long duration of Stage 11 and a lack of detailed knowledge of any extreme climate events that may have occurred. Here we use the distinctive phasing between seasurface temperatures and the oxygen-isotope records of benthic foraminifera in the southeast Atlantic Ocean to stratigraphically align the Holocene interglacial with the first half of the Marine Isotope Stage 11 interglacial optimum. This alignment suggests that the second half of Marine Isotope Stage 11 should not be used as a reference for 'pre-anthropogenic' greenhouse-gas emissions. By compiling benthic carbon-isotope records from sites in the Atlantic Ocean on a single timescale, we also find that meridional overturning circulation strengthened about 415,000 years ago, at a time of high orbital obliquity. We propose that this mechanism transported heat to the high northern latitudes, inhibiting significant ice-sheet build-up and prolonging interglacial conditions. We suggest that this mechanism may have also prolonged other interglacial periods throughout the past 800,000 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breeding in the high Arctic is time constrained and animals should therefore start with their annual reproduction as early as possible. To allow for such early reproduction in migratory birds, females arrive at the breeding grounds either with body stores or they try to rapidly develop their eggs after arrival using local resources. Svalbard breeding barnacle geese Branta leucopsis have to fly non-stop for about 1100 km from their last continental staging site to the archipelago making the transport of body stores costly. However, environmental conditions at the breeding grounds are highly unpredictable favouring residual body stores allowing for egg production after arrival on the breeding grounds. We estimated the reliance on southern continental resources, i.e. body stores for egg formation, in barnacle geese using stable isotope ratios in the geese's forage along the flyway and in their eggs. Females adopted mixed breeding strategies by using southern resources as well as local resources to varying extents for egg formation. Southern capital in lipid-free yolk averaged 41% (range: 23-65%), early laid eggs containing more southern capital than eggs laid late in the season. Yolk lipids and albumen did not vary over time and averaged a southern capital proportion of 54% (range: 32-73%) and 47% (range: 25-88%), respectively. Our findings indicate that female geese vary the use of southern resources when synthesizing their eggs and this allocation also varies among egg tissues. Their mixed and flexible use of distant and local resources potentially allows for adaptive adjustments to environmental conditions encountered at the archipelago just before breeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bathymetric transect of cores in the South China Sea extending from 4200-m to less than 1000-m water depth has been examined for glacial-interglacial changes in carbonate and organic carbon sedimentation. Typical 'Pacific carbonate cycles' (high carbonate content during glacials and low carbonate content during interglacials) characterize cores from water depths deeper than 3500 m. In contrast, 'Atlantic carbonate cycles' (low carbonate during glacials and high carbonate during interglacials) are observed in cores from depths shallower than 3000 m as a result of increased dilution of carbonate by terrigenous material during glacial low stands of sea level. Glacial-interglacial changes in the carbonate chemistry of South China Sea intermediate and deep waters resulted in significant changes in the positions of the carbonate compensation depth (CCD) and the aragonite compensation depth (ACD). During the last glacial the CCD and ACD were at least 400 and 1200 m deeper, respectively, than at present. Organic carbon accumulation rates in the South China Sea were approximately 2 times higher during the last glacial than the Holocene. Carbon isotopic analyses and C/N ratios of the organic matter indicate that only a small fraction of the increase in glacial organic carbon accumulation can be attributed to input of terrestrial carbon. On the basis of this we conclude that surface water productivity in the South China Sea was approximately 2 times higher during the last glacial maximum. This is consistent with previous studies which have demonstrated that glacial productivity was higher in low- to mid-latitude regions of the Atlantic and eastern Pacific. The deglacial decrease in organic carbon accumulation is accompanied by a decrease in delta13Corg. Using the relationship between delta13Corg and [CO2](aq) developed by Popp et al. [1989], we estimate that surface water pCO2 values in the South China Sea during the last 25,000 years were very similar to atmospheric CO2 concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution carbon isotope profile through the uppermost Neoproterozoic-Lower Cambrian part of the Sukharikha section at the northwestern margin of the Siberian platform shows prominent secular oscillations of d13C with peak-to-peak range of 6-10 ?. There are six minima, 1n-6n, and seven maxima 1p-7p, in the Sukharikha Formation and a rising trend of d13C from the minimum 1n of -8.6 ? to maximum 6p of +6.4 ?. The trough 1n probably coincides with the isotopic minimum at the Precambrian-Cambrian boundary worldwide. Highly positive d13C values of peaks 5p and 6p are typical of the upper portion of the Precambrian-Cambrian transitional beds just beneath the Tommotian Stage in Siberia. A second rising trend of d13C is observed through the Krasnoporog and lower Shumny formations. It consists of four excursions with four major maxima that can be cor related with Tommotian-Botomian peaks II, IV, V, and VII of the reference profile from the southeastern Siberian platform. According to the chemostratigraphic cor relation, the first appearances of the index forms of archaeocyaths are earlier in the Sukharikha section than in the Lena-Aldan region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cyclic marl-limestone succession of Middle-Late Campanian age has been investigated with respect to a Milankovitch-controlled origin of geochemical data. In general, the major element geochemistry of the marl-limestone rhythmites can be explained by a simple two-component mixing model with the end-members calcium carbonate and 'average shale'-like material. Carbonate content varies from 55 to 90%. Non-carbonate components are clay minerals (illite, smectite) and biogenic silica from sponge spicules, as well as authigenically formed zeolites (strontian heulandite) and quartz. The redox potential suggests oxidizing conditions throughout the section. Trace element and stable isotopic data as well as SEM investigations show that the carbonate mud is mostly composed of low-magnesium calcitic tests of planktic coccolithophorids and calcareous dinoflagellate cysts (calcispheres). Diagenetic overprint results in a decrease of 2% d18O and an increase in Mn of up to 250 ppm. However, the sediment seems to preserve most of its high Sr content compared to the primary low-magnesium calcite of co-occurring belemnite rostra. The periodicity of geochemical cycles is dominated by 413 ka and weak signals between 51 and 22.5 ka, attributable to orbital forcing. Accumulation rates within these cycles vary between 40 and 50 m/Ma. The resulting cyclic sedimentary sequence is the product of (a) changes in primary production of low-magnesium calcitic biogenic material in surface waters within the long eccentricity and the precession, demonstrated by the CaCO3 content and the Mg/Al, Mn/Al and Sr/Al ratios, and (b) fluctuations in climate and continental weathering, which changed the quality of supplied clay minerals (the illite/smectite ratio), demonstrated by the K/Al ratio. High carbonate productivity correlates with smectite-favouring weathering (semi-arid conditions, conspicuously dry and moist seasonal changes in warmer climates). Ti as the proxy indicator for the detrital terrigenous influx, as well as Rb, Si, Zr and Na, shows only low frequency signals, indicating nearly constant rates of supply throughout the more or less pure pelagic carbonate deposition of the long-lasting third-order Middle-Upper Campanian sedimentary cycle.