982 resultados para interaction design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTARCT Biotechnology has enabled the modification of agricultural materials in a very precise way. Crops have been modified through the insertion of new traits or the inhibition of existing gene functions, named Genetically Modified Organism (GMO), and resulted in improved tolerance of herbicide and/or increased resistance against pests, viruses and fungi. Commercial cultivation of GMO started in 1996 and increased rapidly in 2003 according to a recently released report by the International Service for the Acquisition of Agri-Biotech Applications (ISAAA), depicted continuing consumer resistance in Europe and other part of the world. Upon these developments, the European Union regulations mandated labeling of GMOs containing food and as a consequence, the labeling of GMO containing product in the case of exceeding the1% threshold of alien DNA is required. The aim of the study is to be able to detect and quantify the GMO from the mixture of natural food components. The surface plasmon resonance (SPR) technique combined with fluorescence was used for this purpose. During the presented studies, two key issues are addressed and tried to solve; what is the best strategy to design and built an interfacial architecture of a probe oligonucletide layer either on a two dimensional surface or on an array platform; and what is the best detection method allowing for a sensitive monitoring of the hybridisation events. The study includes two parts: first part includes characterization of different PNAs on a 2D planar surface by defining affinity constants using the very well established optical method “Surface Plasmon Fluorescence Spectroscopy”(SPFS) and on the array platform by “Surface Plasmon Fluorescence Microscopy” (SPFM), and at the end comparison of the sensitivity of these two techniques. The second part is composed of detection of alien DNA in food components by using DNA and PNA catcher probes on the array platform in real-time by SPFM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic biology has recently had a great development, many papers have been published and many applications have been presented, spanning from the production of biopharmacheuticals to the synthesis of bioenergetic substrates or industrial catalysts. But, despite these advances, most of the applications are quite simple and don’t fully exploit the potential of this discipline. This limitation in complexity has many causes, like the incomplete characterization of some components, or the intrinsic variability of the biological systems, but one of the most important reasons is the incapability of the cell to sustain the additional metabolic burden introduced by a complex circuit. The objective of the project, of which this work is part, is trying to solve this problem through the engineering of a multicellular behaviour in prokaryotic cells. This system will introduce a cooperative behaviour that will allow to implement complex functionalities, that can’t be obtained with a single cell. In particular the goal is to implement the Leader Election, this procedure has been firstly devised in the field of distributed computing, to identify the process that allow to identify a single process as organizer and coordinator of a series of tasks assigned to the whole population. The election of the Leader greatly simplifies the computation providing a centralized control. Further- more this system may even be useful to evolutionary studies that aims to explain how complex organisms evolved from unicellular systems. The work presented here describes, in particular, the design and the experimental characterization of a component of the circuit that solves the Leader Election problem. This module, composed of an hybrid promoter and a gene, is activated in the non-leader cells after receiving the signal that a leader is present in the colony. The most important element, in this case, is the hybrid promoter, it has been realized in different versions, applying the heuristic rules stated in [22], and their activity has been experimentally tested. The objective of the experimental characterization was to test the response of the genetic circuit to the introduction, in the cellular environment, of particular molecules, inducers, that can be considered inputs of the system. The desired behaviour is similar to the one of a logic AND gate in which the exit, represented by the luminous signal produced by a fluorescent protein, is one only in presence of both inducers. The robustness and the stability of this behaviour have been tested by changing the concentration of the input signals and building dose response curves. From these data it is possible to conclude that the analysed constructs have an AND-like behaviour over a wide range of inducers’ concentrations, even if it is possible to identify many differences in the expression profiles of the different constructs. This variability accounts for the fact that the input and the output signals are continuous, and so their binary representation isn’t able to capture the complexity of the behaviour. The module of the circuit that has been considered in this analysis has a fundamental role in the realization of the intercellular communication system that is necessary for the cooperative behaviour to take place. For this reason, the second phase of the characterization has been focused on the analysis of the signal transmission. In particular, the interaction between this element and the one that is responsible for emitting the chemical signal has been tested. The desired behaviour is still similar to a logic AND, since, even in this case, the exit signal is determined by the hybrid promoter activity. The experimental results have demonstrated that the systems behave correctly, even if there is still a substantial variability between them. The dose response curves highlighted that stricter constrains on the inducers concentrations need to be imposed in order to obtain a clear separation between the two levels of expression. In the conclusive chapter the DNA sequences of the hybrid promoters are analysed, trying to identify the regulatory elements that are most important for the determination of the gene expression. Given the available data it wasn’t possible to draw definitive conclusions. In the end, few considerations on promoter engineering and complex circuits realization are presented. This section aims to briefly recall some of the problems outlined in the introduction and provide a few possible solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the scientific objectives addressed by the Radio Science Experiment hosted on board the ESA mission BepiColombo is the retrieval of the rotational state of planet Mercury. In fact, the estimation of the obliquity and the librations amplitude were proven to be fundamental for constraining the interior composition of Mercury. This is accomplished by the Mercury Orbiter Radio science Experiment (MORE) via a strict interaction among different payloads thus making the experiment particularly challenging. The underlying idea consists in capturing images of the same landmark on the surface of the planet in different epochs in order to observe a displacement of the identified features with respect to a nominal rotation which allows to estimate the rotational parameters. Observations must be planned accurately in order to obtain image pairs carrying the highest information content for the following estimation process. This is not a trivial task especially in light of the several dynamical constraints involved. Another delicate issue is represented by the pattern matching process between image pairs for which the lowest correlation errors are desired. The research activity was conducted in the frame of the MORE rotation experiment and addressed the design and implementation of an end-to-end simulator of the experiment with the final objective of establishing an optimal science planning of the observations. In the thesis, the implementation of the singular modules forming the simulator is illustrated along with the simulations performed. The results obtained from the preliminary release of the optimization algorithm are finally presented although the software implemented is only at a preliminary release and will be improved and refined in the future also taking into account the developments of the mission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to synthesize multipotent drugs for the treatment of Alzheimer’s disease (AD) and for benign prostatic hyperplasia (BPH), two diseases that affect the elderly. AD is a neurodegenerative disorder that is characterized, among other factors, by loss of cholinergic neurons. Selective activation of M1 receptors through an allosteric site could restore the cholinergic hypofunction, improving the cognition in AD patients. We describe here the discovery and SAR of a novel series of quinone derivatives. Among them, 1 was the most interesting, being a high M1 selective positive allosteric modulator. At 100 nM, 1 triplicated the production of cAMP induced by oxotremorine. Moreover, it inhibited AChE and it displayed antioxidant properties. Site-directed mutagenesis experiments indicated that 1 acts at an allosteric site involving residue F77. Thus, 1 is a promising drug because the M1 activation may offer disease-modifying properties that could address and reduce most of AD hallmarks. BPH is an enlargement of the prostate caused by increased cellular growth. Blockade of α1-ARs is the predominant form of medical therapy for the treatment of the symptoms associated with BPH. α1-ARs are classified into three subtypes. The α1A- and α1D-AR subtypes are predominant in the prostate, while α1B-ARs regulate the blood pressure. Herein, we report the synthesis of quinazoline-derivatives obtained replacing the piperazine ring of doxazosin and prazosin with (S)- or (R)-3-aminopiperidine. The presence of a chiral center in the 3-C position of the piperidine ring allowed us to exploit the importance of stereochemistry in the binding at α1-ARs. It turned out that the S configuration at the 3-C position of the piperidine increases the affinity of the compounds at all three α1-AR subtypes, whereas the configuration at the benzodioxole ring of doxazosin derivatives is not critical for the interaction with α1-ARs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is currently widely accepted that the understanding of complex cell functions depends on an integrated network theoretical approach and not on an isolated view of the different molecular agents. Aim of this thesis was the examination of topological properties that mirror known biological aspects by depicting the human protein network with methods from graph- and network theory. The presented network is a partial human interactome of 9222 proteins and 36324 interactions, consisting of single interactions reliably extracted from peer-reviewed scientific publications. In general, one can focus on intra- or intermodular characteristics, where a functional module is defined as "a discrete entity whose function is separable from those of other modules". It is found that the presented human network is also scale-free and hierarchically organised, as shown for yeast networks before. The interactome also exhibits proteins with high betweenness and low connectivity which are biologically analyzed and interpreted here as shuttling proteins between organelles (e.g. ER to Golgi, internal ER protein translocation, peroxisomal import, nuclear pores import/export) for the first time. As an optimisation for finding proteins that connect modules, a new method is developed here based on proteins located between highly clustered regions, rather than regarding highly connected regions. As a proof of principle, the Mediator complex is found in first place, the prime example for a connector complex. Focusing on intramodular aspects, the measurement of k-clique communities discriminates overlapping modules very well. Twenty of the largest identified modules are analysed in detail and annotated to known biological structures (e.g. proteasome, the NFκB-, TGF-β complex). Additionally, two large and highly interconnected modules for signal transducer and transcription factor proteins are revealed, separated by known shuttling proteins. These proteins yield also the highest number of redundant shortcuts (by calculating the skeleton), exhibit the highest numbers of interactions and might constitute highly interconnected but spatially separated rich-clubs either for signal transduction or for transcription factors. This design principle allows manifold regulatory events for signal transduction and enables a high diversity of transcription events in the nucleus by a limited set of proteins. Altogether, biological aspects are mirrored by pure topological features, leading to a new view and to new methods that assist the annotation of proteins to biological functions, structures and subcellular localisations. As the human protein network is one of the most complex networks at all, these results will be fruitful for other fields of network theory and will help understanding complex network functions in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regenerative medicine and tissue engineering attempt to repair or improve the biological functions of tissues that have been damaged or have ceased to perform their role through three main components: a biocompatible scaffold, cellular component and bioactive molecules. Nanotechnology provide a toolbox of innovative scaffold fabrication procedures in regenerative medicine. In fact, nanotechnology, using manufacturing techniques such as conventional and unconventional lithography, allows fabricating supports with different geometries and sizes as well as displaying physical chemical properties tunable over different length scales. Soft lithography techniques allow to functionalize the support by specific molecules that promote adhesion and control the growth of cells. Understanding cell response to scaffold, and viceversa, is a key issue; here we show our investigation of the essential features required for improving the cell-surface interaction over different scale lengths. The main goal of this thesis has been to devise a nanotechnology-based strategy for the fabrication of scaffolds for tissue regeneration. We made four types of scaffolds, which are able to accurately control cell adhesion and proliferation. For each scaffold, we chose properly designed materials, fabrication and characterization techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis, included within the THESEUS project, is the development of a mathematical model 2DV two-phase, based on the existing code IH-2VOF developed by the University of Cantabria, able to represent together the overtopping phenomenon and the sediment transport. Several numerical simulations were carried out in order to analyze the flow characteristics on a dike crest. The results show that the seaward/landward slope does not affect the evolution of the flow depth and velocity over the dike crest whereas the most important parameter is the relative submergence. Wave heights decrease and flow velocities increase while waves travel over the crest. In particular, by increasing the submergence, the wave height decay and the increase of the velocity are less marked. Besides, an appropriate curve able to fit the variation of the wave height/velocity over the dike crest were found. Both for the wave height and for the wave velocity different fitting coefficients were determined on the basis of the submergence and of the significant wave height. An equation describing the trend of the dimensionless coefficient c_h for the wave height was derived. These conclusions could be taken into consideration for the design criteria and the upgrade of the structures. In the second part of the thesis, new equations for the representation of the sediment transport in the IH-2VOF model were introduced in order to represent beach erosion while waves run-up and overtop the sea banks during storms. The new model allows to calculate sediment fluxes in the water column together with the sediment concentration. Moreover it is possible to model the bed profile evolution. Different tests were performed under low-intensity regular waves with an homogeneous layer of sand on the bottom of a channel in order to analyze the erosion-deposition patterns and verify the model results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis is described the design and synthesis of potential agents for the treatment of the multifactorial Alzheimer’s disease (AD). Our multi-target approach was to consider cannabinoid system involved in AD, together with classic targets. In the first project, designed modifications were performed on lead molecule in order to increase potency and obtain balanced activities on fatty acid amide hydrolase and cholinesterases. A small library of compounds was synthesized and biological results showed increased inhibitory activity (nanomolar range) related to selected target. The second project was focused on the benzofuran framework, a privileged structure being a common moiety found in many biologically active natural products and therapeutics. Hybrid molecules were designed and synthesized, focusing on the inhibition of cholinesterases, Aβ aggregation, FAAH and on the interaction with CB receptors. Preliminary results showed that several compounds are potent CB ligands, in particular the high affinity for CB2 receptors, could open new opportunities to modulate neuroinflammation. The third and the fourth project were carried out at the IMS, Aberdeen, under the supervision of Prof. Matteo Zanda. The role of the cannabinoid system in the brain is still largely unexplored and the relationship between the CB1 receptors functional modification, density and distribution and the onset of a pathological state is not well understood. For this reasons, Rimonabant analogues suitable as radioligands were synthesized. The latter, through PET, could provide reliable measurements of density and distribution of CB1 receptors in the brain. In the fifth project, in collaboration with CHyM of York, the goal was to develop arginine analogues that are target specific due to their exclusively location into NOS enzymes and could work as MRI contrasting agents. Synthesized analogues could be suitable substrate for the transfer of polarization by p-H2 molecules through SABRE technique transforming MRI a more sensitive and faster technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a new Artificial Neural Network (ANN) able to predict at once the main parameters representative of the wave-structure interaction processes, i.e. the wave overtopping discharge, the wave transmission coefficient and the wave reflection coefficient. The new ANN has been specifically developed in order to provide managers and scientists with a tool that can be efficiently used for design purposes. The development of this ANN started with the preparation of a new extended and homogeneous database that collects all the available tests reporting at least one of the three parameters, for a total amount of 16’165 data. The variety of structure types and wave attack conditions in the database includes smooth, rock and armour unit slopes, berm breakwaters, vertical walls, low crested structures, oblique wave attacks. Some of the existing ANNs were compared and improved, leading to the selection of a final ANN, whose architecture was optimized through an in-depth sensitivity analysis to the training parameters of the ANN. Each of the selected 15 input parameters represents a physical aspect of the wave-structure interaction process, describing the wave attack (wave steepness and obliquity, breaking and shoaling factors), the structure geometry (submergence, straight or non-straight slope, with or without berm or toe, presence or not of a crown wall), or the structure type (smooth or covered by an armour layer, with permeable or impermeable core). The advanced ANN here proposed provides accurate predictions for all the three parameters, and demonstrates to overcome the limits imposed by the traditional formulae and approach adopted so far by some of the existing ANNs. The possibility to adopt just one model to obtain a handy and accurate evaluation of the overall performance of a coastal or harbor structure represents the most important and exportable result of the work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diese Arbeit ist ein Beitrag zu den schnell wachsenden Forschungsgebieten der Nano-Biotechnologie und Nanomedizin. Sie behandelt die spezifische Gestaltung magnetischer Nanomaterialien für verschiedene biomedizinische Anwendungsgebiete, wie beispielsweise Kontrastmittel für die magnetische Resonanztomographie (MRT) oder "theragnostische" Agenzien für simultane optische/MR Detektion und Behandlung mittels photodynamischer Therapie (PDT).rnEine Vielzahl magnetischer Nanopartikel (NP) mit unterschiedlichsten magnetischen Eigenschaften wurden im Rahmen dieser Arbeit synthetisiert und erschöpfend charakterisiert. Darüber hinaus wurde eine ganze Reihe von Oberflächenmodifizierungsstrategien entwickelt, um sowohl die kolloidale als auch die chemische Stabilität der Partikel zu verbessern, und dadurch den hohen Anforderungen der in vitro und in vivo Applikation gerecht zu werden. Diese Strategien beinhalteten nicht nur die Verwendung bi-funktionaler und multifunktioneller Polymerliganden, sondern auch die Kondensation geeigneter Silanverbindungen, um eine robuste, chemisch inerte und hydrophile Siliziumdioxid- (SiO2) Schale um die magnetischen NP auszubilden.rnGenauer gesagt, der Bildungsmechanismus und die magnetischen Eigenschaften monodisperser MnO NPs wurden ausgiebig untersucht. Aufgrund ihres einzigartigen magnetischen Verhaltens eignen sich diese NPs besonders als (positive) Kontrastmittel zur Verkürzung der longitudinalen Relaxationszeit T1, was zu einer Aufhellung im entsprechenden MRT-Bild führt. Tatsächlich wurde dieses kontrastverbessernde Potential in mehreren Studien mit unterschiedlichen Oberflächenliganden bestätigt. Au@MnO „Nanoblumen“, auf der anderen Seite, sind Vertreter einer weiteren Klasse von Nanomaterialien, die in den vergangenen Jahren erhebliches Interesse in der wissenschaftlichen Welt geweckt hat und oft „Nano-hetero-Materialien“ genannt wird. Solche Nano-hetero-partikel vereinen die individuellen physikalischen und chemischen Eigenschaften der jeweiligen Komponenten in einem nanopartikulärem System und erhöhen dadurch die Vielseitigkeit der möglichen Anwendungen. Sowohl die magnetischen Merkmale von MnO, als auch die optischen Eigenschaften von Au bieten die Möglichkeit, diese „Nanoblumen“ für die kombinierte MRT und optische Bildgebung zu verwenden. Darüber hinaus erlaubt das Vorliegen zweier chemisch unterschiedlicher Oberflächen die gleichzeitige selektive Anbindung von Katecholliganden (auf MnO) und Thiolliganden (auf Au). Außerdem wurde das therapeutische Potential von magnetischen NPs anhand von MnO NPs demonstriert, die mit dem Photosensibilisator Protoporhyrin IX (PP) funktionalisiert waren. Bei Bestrahlung mit sichtbarem Licht initiiert PP die Produktion von zytotoxisch-reaktivem Sauerstoff. Wir zeigen, dass Nierenkrebszellen, die mit PP-funktionalisierten MnO NPs inkubiert wurden nach Bestrahlung mit Laserlicht verenden, während sie ohne Bestrahlung unverändert bleiben. In einem ähnlichen Experiment untersuchten wir die Eigenschaften von SiO2 beschichteten MnO NPs. Dafür wurde eigens eine neuartige SiO2-Beschichtungsmethode entwickelt, die einer nachfolgende weitere Anbindung verschiedenster Liganden und die Einlagerung von Fluoreszenzfarbstoffen durch herkömmliche Silan- Sol-Gel Chemie erlaubt. Die Partikel zeigten eine ausgezeichnete Stabilität in einer ganzen Reihe wässriger Lösungen, darunter auch physiologische Kochsalzlösung, Pufferlösungen und humanes Blutserum, und waren weniger anfällig gegenüber Mn-Ionenauswaschung als einfache PEGylierte MnO NPs. Des Weiteren konnte bewiesen werden, dass die dünne SiO2 Schicht nur einen geringen Einfluss auf das magnetische Verhalten der NPs hatte, so dass sie weiterhin als T1-Kontrastmittel verwendet werden können. Schließlich konnten zusätzlich FePt@MnO NPs hergestellt werden, welche die individuellen magnetischen Merkmale eines ferromagnetischen (FePt) und eines antiferromagnetischen (MnO) Materials vereinen. Wir zeigen, dass wir die jeweiligen Partikelgrößen, und damit das resultierende magnetische Verhalten, durch Veränderung der experimentellen Parameter variieren können. Die magnetische Wechselwirkung zwischen beiden Materialien kann dabei auf Spinkommunikation an der Grenzfläche zwischen beiden NP-Sorten zurückgeführt werden.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this experimental work we report the design, the synthesis and characterization of a new class of Re(I) complexes of the general formula fac-[Re(CO)3(N^N)(2-QTZ)], where N^N = 2,2’ bipyridine or 1,10 phenantroline, whereas 2-QTZ is the anion 2-quinolyl-tetrazolate. The complexes and, in particular, the tetrazolate ligand 2-QTZ were designed in order to investigate their specific interaction with biologically and toxicologically relevant metal ions, as Zn(II), Cd(II) e Cu(II). The addition of such ions led to substantial variations of the photophysical properties of these complexes, suggesting their application as luminescent sensors. The photophysical performance of the complexes proved to remain unchanged inside cellular substrates, as Yarrowia Lipolytica cultures. Within these yeasts, the complexes show unchanged ability to perform luminescent sensing towards Zn(II) and Cd(II) ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As lightweight and slender structural elements are more frequently used in the design, large scale structures become more flexible and susceptible to excessive vibrations. To ensure the functionality of the structure, dynamic properties of the occupied structure need to be estimated during the design phase. Traditional analysis method models occupants simply as an additional mass; however, research has shown that human occupants could be better modeled as an additional degree-of- freedom. In the United Kingdom, active and passive crowd models are proposed by the Joint Working Group as a result of a series of analytical and experimental research. It is expected that the crowd models would yield a more accurate estimation to the dynamic response of the occupied structure. However, experimental testing recently conducted through a graduate student project at Bucknell University indicated that the proposed passive crowd model might be inaccurate in representing the impact on the structure from the occupants. The objective of this study is to provide an assessment of the validity of the crowd models proposed by JWG through comparing the dynamic properties obtained from experimental testing data and analytical modeling results. The experimental data used in this study was collected by Firman in 2010. The analytical results were obtained by performing a time-history analysis on a finite element model of the occupied structure. The crowd models were created based on the recommendations from the JWG combined with the physical properties of the occupants during the experimental study. During this study, SAP2000 was used to create the finite element models and to implement the analysis; Matlab and ME¿scope were used to obtain the dynamic properties of the structure through processing the time-history analysis results from SAP2000. The result of this study indicates that the active crowd model could quite accurately represent the impact on the structure from occupants standing with bent knees while the passive crowd model could not properly simulate the dynamic response of the structure when occupants were standing straight or sitting on the structure. Future work related to this study involves improving the passive crowd model and evaluating the crowd models with full-scale structure models and operating data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To assess the effect of a possible interaction between dietary fat and physical inactivity on whole-body insulin sensitivity and intramyocellular lipids (IMCLs). RESEARCH DESIGN AND METHODS: Eight healthy male volunteers were studied on two occasions. After 2 days of an equilibrated diet and moderate physical activity, participants remained inactive (bed rest) for 60 h and consumed either a high-saturated fat (45% fat, of which approximately 60% was saturated fat [BR-HF]) or a high-carbohydrate (70% carbohydrate [BR-HCHO]) diet. To evaluate the effect of a high-fat diet alone, six of the eight volunteers were restudied after a 2-day equilibrated diet followed by 60 h on a high-saturated fat diet and controlled physical activity (PA-HF). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp and IMCL concentrations by (1)H-magnetic resonance spectroscopy. RESULTS: Insulin-mediated glucose disposal was decreased by BR-HF condition (-24 +/- 6%, P < 0.05) but did not change with BR-HCHO (+19 +/- 10%, NS). BR-HF and BR-HCHO increased IMCL levels (+32 +/- 7%, P < 0.05 and +17 +/- 8%, P < 0.0011, respectively). Although the increase in IMCL levels with PA-HF (+31 +/- 19%, P = 0.12) was similar to that during BR-HF, insulin-mediated glucose disposal (-7 +/- 9%, NS) was not decreased. CONCLUSIONS: These data indicate that physical inactivity and a high-saturated fat diet may interact to reduce whole-body insulin sensitivity. IMCL content was influenced by dietary lipid and physical inactivity but was not directly associated with insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Though 3D computer graphics has seen tremendous advancement in the past two decades, most available mechanisms for computer interaction in 3D are high cost and targeted for industry and virtual reality applications. Recent advances in Micro-Electro-Mechanical-System (MEMS) devices have brought forth a variety of new low-cost, low-power, miniature sensors with high accuracy, which are well suited for hand-held devices. In this work a novel design for a 3D computer game controller using inertial sensors is proposed, and a prototype device based on this design is implemented. The design incorporates MEMS accelerometers and gyroscopes from Analog Devices to measure the three components of the acceleration and angular velocity. From these sensor readings, the position and orientation of the hand-held compartment can be calculated using numerical methods. The implemented prototype is utilizes a USB 2.0 compliant interface for power and communication with the host system. A Microchip dsPIC microcontroller is used in the design. This microcontroller integrates the analog to digital converters, the program memory flash, as well as the core processor, on a single integrated circuit. A PC running Microsoft Windows operating system is used as the host machine. Prototype firmware for the microcontroller is developed and tested to establish the communication between the design and the host, and perform the data acquisition and initial filtering of the sensor data. A PC front-end application with a graphical interface is developed to communicate with the device, and allow real-time visualization of the acquired data.