980 resultados para infrared sensing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of ocean science fields have profitted, either directly or indirectly from satellite remote sensing, including physical, biological and geological oceanography. User oriented applications include fishing, shipping, offshore drilling and mining, coastal engineering and coastal hydrology. Following a brief account of the technology involved, areas in oceanography benefitting from satellite information are detailed. Examples are given of satellite data applications to marine resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3N 4microcantilever mirror structures were fabricated. © 2007 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical fiber strain sensing technique, based on Brillouin Optical Time Domain Reflectometry (BOTDR), was used to obtain the full deformation profile of a secant pile wall during construction of an adjacent basement in London. Details of the installation of sensors as well as data processing are described. By installing optical fiber down opposite sides of the pile, the distributed strain profiles obtained can be used to give both the axial and lateral movements along the pile. Measurements obtained from the BOTDR were found in good agreement with inclinometer data from the adjacent piles. The relative merits of the two different techniques are discussed. © 2007 ASCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a technique which can be used to improve the accuracy of infrared (IR) surface temperature measurements made on MEMS (Micro-Electro-Mechanical- Systems) devices. The technique was used to thermally characterize a SOI (Silicon-On-Insulator) CMOS (Complementary Metal Oxide Semiconductor) MEMS thermal flow sensor. Conventional IR temperature measurements made on the sensor were shown to give significant surface temperature errors, due to the optical transparency of the SiO 2 membrane layers and low emissivity/high reflectivity of the metal. By making IR measurements on radiative carbon micro-particles placed in isothermal contact with the device, the accuracy of the surface temperature measurement was significantly improved. © 2010 EDA Publishing/THERMINIC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steering feel, or steering torque feedback, is widely regarded as an important aspect of the handling quality of a vehicle. Despite this, there is little theoretical understanding of its role. This paper describes an initial attempt to model the role of steering torque feedback arising from lateral tyre forces. The path-following control of a nonlinear vehicle model is implemented using a time-varying model predictive controller. A series of Kalman filters are used to represent the driver's ability to generate estimates of the system states from noisy sensory measurements, including the steering torque. It is found that under constant road friction conditions, the steering torque feedback reduces path-following errors provided the friction is sufficiently high to prevent frequent saturation of the tyres. When the driver model is extended to allow identification of, and adaptation to, a varying friction condition, it is found that the steering torque assists in the accurate identification of the friction condition. The simulation results give insight into the role of steering torque feedback arising from lateral tyre forces. The paper concludes with recommendations for further work. © 2011 Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P. This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460- 850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Förster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used. These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new approach based on Discriminant Analysis to map a high dimensional image feature space onto a subspace which has the following advantages: 1. each dimension corresponds to a semantic likelihood, 2. an efficient and simple multiclass classifier is proposed and 3. it is low dimensional. This mapping is learnt from a given set of labeled images with a class groundtruth. In the new space a classifier is naturally derived which performs as well as a linear SVM. We will show that projecting images in this new space provides a database browsing tool which is meaningful to the user. Results are presented on a remote sensing database with eight classes, made available online. The output semantic space is a low dimensional feature space which opens perspectives for other recognition tasks. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are emerging as fundamental players in the regulation of neural plasticity and in pathological conditions. Here we showed that lead (Pb2+), a well known neurotoxic metal ion, reversibly and concentration-dependently inhib

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are ligand-gated cation channels activated by extracellular protons. In periphery, they contribute to sensory transmission, including that of nociception and pain. Here we characterized ASIC-like currents in dorsal horn neurons of the rat spinal cord and their functional modulation in pathological conditions. Reverse transcriptase-nested PCR and Western blotting showed that three ASIC isoforms, ASIC1a, ASIC2a, and ASIC2b, are expressed at a high level in dorsal horn neurons. Electrophysiological and pharmacological properties of the proton-gated currents suggest that homomeric ASIC1a and/or heteromeric ASIC1a + 2b channels are responsible for the proton-induced currents in the majority of dorsal horn neurons. Acidification-induced action potentials in these neurons were compatible in a pH-dependent manner with the pH dependence of ASIC-like current. Furthermore, peripheral complete Freund's adjuvant-induced inflammation resulted in increased expression of both ASIC1a and ASIC2a in dorsal horn. These results support the idea that the ASICs of dorsal horn neurons participate in central sensory transmission/modulation under physiological conditions and may play important roles in inflammation-related persistent pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) composed of ASIC1a subunit exhibit a high Ca2+ permeability and play important roles in synaptic plasticity and acid-induced cell death. Here, we show that ischemia enhances ASIC currents through the phosphorylation at Ser478 and Ser479 of ASIC1a, leading to exacerbated ischemic cell death. The phosphorylation is catalyzed by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, as a result of activation of NR2B-containing N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) during ischemia. Furthermore, NR2B-specific antagonist, CaMKII inhibitor, or overexpression of mutated form of ASIC1a with Ser478 or Ser479 replaced by alanine (ASICla-S478A, ASIC1a-S479A) in cultured hippocampal neurons prevented ischemia-induced enhancement of ASIC currents, cytoplasmic Ca2+ elevation, as well as neuronal death. Thus, NMDAR-CaMKII cascade is functionally coupled to ASICs and contributes to acidotoxicity during ischemia. Specific blockade of NMDAR/CaMKII-ASIC coupling may reduce neuronal death after ischemia and other pathological conditions involving excessive glutamate release and acidosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of chronic pain involves alterations in peripheral nociceptors as well as elevated neuronal activity in multiple regions of the CNS. Previous pharmacological and behavioral studies suggest that peripheral acid-sensing ion channels (ASICs) cont

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some of the earliest theoretical speculation, stimulated by the growth of semiconductor superlattices, focused on novel devices based on vertical transport through engineered band structures; Esaki and Tsu promised Bloch oscillators in narrow mini-band systems and Kazarinov and Suris contemplated electrically stimulated intersubband transitions as sources of infrared radiation. Nearly twenty years later these material systems have been perfected, characterized and understood and experiments are emerging that test some of these original concepts for novel submillimetre wave electronics. Here we describe recent experiments on intersubband emission in quantum wells stimulated by resonant tunnelling currents. A critical issue at this time is devising a way to achieve population inversion. Other experiments explore 'saturation' effects in narrow miniband transport. Thermal saturation may be viewed as a precursor to Bloch oscillation if the same effects can be induced with an applied electric field.