1000 resultados para induced
Resumo:
Distinguishing drug-induced liver injury (DILI) from idiopathic autoimmune hepatitis (AIH) can be challenging. We performed a standardized histologic evaluation to explore potential hallmarks to differentiate AIH versus DILI. Biopsies from patients with clinically well-characterized DILI [n = 35, including 19 hepatocellular injury (HC) and 16 cholestatic/mixed injury (CS)] and AIH (n = 28) were evaluated for Ishak scores, prominent inflammatory cell types in portal and intra-acinar areas, the presence or absence of emperipolesis, rosette formation, and cholestasis in a blinded fashion by four experienced hepatopathologists. Histologic diagnosis was concordant with clinical diagnosis in 65% of cases; but agreement on final diagnosis among the four pathologists was complete in only 46% of cases. Interface hepatitis, focal necrosis, and portal inflammation were present in all evaluated cases, but were more severe in AIH (P < 0.05) than DILI (HC). Portal and intra-acinar plasma cells, rosette formation, and emperiopolesis were features that favored AIH (P < 0.02). A model combining portal inflammation, portal plasma cells, intra-acinar lymphocytes and eosinophils, rosette formation, and canalicular cholestasis yielded an area under the receiver operating characteristic curve (AUROC) of 0.90 in predicting DILI (HC) versus AIH. All Ishak inflammation scores were more severe in AIH than DILI (CS) (P ≤ 0.05). The four AIH-favoring features listed above were consistently more prevalent in AIH, whereas portal neutrophils and intracellular (hepatocellular) cholestasis were more prevalent in DILI (CS) (P < 0.02). The combination of portal inflammation, fibrosis, portal neutrophils and plasma cells, and intracellular (hepatocellular) cholestasis yielded an AUC of 0.91 in predicting DILI (CS) versus AIH. Conclusion: Although an overlap of histologic findings exists for AIH and DILI, sufficient differences exist so that pathologists can use the pattern of injury to suggest the correct diagnosis.
Resumo:
The aetiology of autoimmune hepatitis (AIH) is uncertain but the disease can be triggered in susceptible patients by external factors such as viruses or drugs. AIH usually develops in individuals with a genetic background mainly consisting of some risk alleles of the major histocompatibility complex (HLA). Many drugs have been linked to AIH phenotypes, which sometimes persist after drug discontinuation, suggesting that they awaken latent autoimmunity. At least three clinical scenarios have been proposed that refers to drug- induced autoimmune liver disease (DIAILD): AIH with drug-induced liver injury (DILI); drug induced-AIH (DI-AIH); and immune mediated DILI (IM-DILI). In addition, there are instances showing mixed features of DI-AIH and IM-DILI, as well as DILI cases with positive autoantibodies. Histologically distinguishing DILI from AIH remains a challenge. Even more challenging is the differentiation of AIH from DI-AIH mainly relying in histological features; however, a detailed standardised histologic evaluation of large cohorts of AIH and DI-AIH patients would probably render more subtle features that could be of help in the differential diagnosis between both entities. Growing information on the relationship of drugs and AIH is being available, being drugs like statins and biologic agents more frequently involved in cases of DIAILD. In addition, there is some evidence on the fact that patients diagnosed with DIAILD may have had a previous episode of hepatotoxicity. Further collaborative studies in DIAILD will strengthen the knowledge and understanding of this intriguing and complex disorder which might represent different phenotypes across the spectrum of disease.
Resumo:
CONTEXT Soluble TNF-like weak inducer of apoptosis (sTWEAK) is generated by the intracellular proteolytic cleavage of full-length membrane-bound TNF-like weak inducer of apoptosis (mTWEAK). sTWEAK levels are reduced in diseases with an inflammatory component. Additionally, sTWEAK hampers TNFα activity in human cells. OBJECTIVES The objectives of the study were as follows: 1) to determine circulating sTWEAK in severe obesity and after bariatric surgery; 2) to study m/sTWEAK and its receptor fibroblast growth factor-inducible 14 (Fn14) protein expression in sc adipose tissue (SAT) of severely obese subjects, in SAT stromal vascular fraction (SVF), and isolated adipocytes and in human monocyte-derived macrophages; and 3) to explore, on human adipocytes, the sTWEAK effect on TNFα proinflammatory activity. DESIGN sTWEAK levels were measured in cohort 1: severely obese subjects (n = 23) and a control group (n = 35); and in cohort 2: (n = 23) severely obese subjects before and after surgery. The m/sTWEAK and Fn14 expressions were determined in SAT biopsies, SVF, and isolated adipocytes from severely obese and control subjects and in human monocyte-derived macrophages. In human primary cultured adipocytes, sTWEAK pretreated and TNFα challenged, IL-6, IL-8, and adiponectin protein and gene expressions were determined and nuclear factor-κ B and MAPK signaling analyzed. RESULTS sTWEAK levels were reduced in severely obese subjects. After surgery, sTWEAK levels rose in 69% of patients. mTWEAK protein expression was increased in SAT and SVF of severely obese subjects, whereas Fn14 was up-regulated in isolated adipocytes. M2 human monocyte-derived macrophages overexpress mTWEAK. In human adipocytes, sTWEAK down-regulates TNFα cytokine production by hampering TNFα intracellular signaling events. CONCLUSION The decrease of sTWEAK in severely obese patients may favor the proinflammatory activity elicited by TNFα.
Resumo:
We report a novel technique for computing diet-induced thermogenesis using data from 24-h respiration chamber measurements of 76 subjects. Physical activity (PA) was determined using a radar system to assess its duration and an accelerometer to evaluate its intensity. The regression line relating PA and energy expenditure facilitated calculation of the integrated thermogenic response to the total energy ingested (11.4% ± 3.8%), which is consistent with the values classically reported in the literature (10%) at the group level.
Resumo:
1. Melanin pigments provide the most widespread source of coloration in vertebrates, but the adaptive function of such traits remains poorly known. 2. In a wild population of tawny owls (Strix aluco), we investigated the relationships between plumage coloration, which varies continuously from dark to pale reddish, and the strength and cost of an induced immune response. 3. The degree of reddishness in tawny owl feather colour was positively correlated with the concentration of phaeomelanin and eumelanin pigments, and plumage coloration was highly heritable (h(2) = 0.93). No carotenoids were detected in the feathers. 4. In mothers, the degree of melanin-based coloration was associated with antibody production against a vaccine, with dark reddish females maintaining a stronger level of antibody for a longer period of time compared to pale reddish females, but at a cost in terms of greater loss of body mass. 5. A cross-fostering experiment showed that, independent of maternal coloration, foster chicks reared by vaccinated mothers were lighter than those reared by nonvaccinated mothers. Hence, even though dark reddish mothers suffered a stronger immune cost than pale reddish mothers, this asymmetric cost was not translated to offspring growth. 6. Our study suggests that different heritable melanin-based colorations are associated with alternative strategies to resist parasite attacks, with dark reddish individuals investing more resources towards the humoral immune response than lightly reddish conspecifics.
Resumo:
BACKGROUND & AIMS Hy's Law, which states that hepatocellular drug-induced liver injury (DILI) with jaundice indicates a serious reaction, is used widely to determine risk for acute liver failure (ALF). We aimed to optimize the definition of Hy's Law and to develop a model for predicting ALF in patients with DILI. METHODS We collected data from 771 patients with DILI (805 episodes) from the Spanish DILI registry, from April 1994 through August 2012. We analyzed data collected at DILI recognition and at the time of peak levels of alanine aminotransferase (ALT) and total bilirubin (TBL). RESULTS Of the 771 patients with DILI, 32 developed ALF. Hepatocellular injury, female sex, high levels of TBL, and a high ratio of aspartate aminotransferase (AST):ALT were independent risk factors for ALF. We compared 3 ways to use Hy's Law to predict which patients would develop ALF; all included TBL greater than 2-fold the upper limit of normal (×ULN) and either ALT level greater than 3 × ULN, a ratio (R) value (ALT × ULN/alkaline phosphatase × ULN) of 5 or greater, or a new ratio (nR) value (ALT or AST, whichever produced the highest ×ULN/ alkaline phosphatase × ULN value) of 5 or greater. At recognition of DILI, the R- and nR-based models identified patients who developed ALF with 67% and 63% specificity, respectively, whereas use of only ALT level identified them with 44% specificity. However, the level of ALT and the nR model each identified patients who developed ALF with 90% sensitivity, whereas the R criteria identified them with 83% sensitivity. An equal number of patients who did and did not develop ALF had alkaline phosphatase levels greater than 2 × ULN. An algorithm based on AST level greater than 17.3 × ULN, TBL greater than 6.6 × ULN, and AST:ALT greater than 1.5 identified patients who developed ALF with 82% specificity and 80% sensitivity. CONCLUSIONS When applied at DILI recognition, the nR criteria for Hy's Law provides the best balance of sensitivity and specificity whereas our new composite algorithm provides additional specificity in predicting the ultimate development of ALF.
Resumo:
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.
Resumo:
Diabetes is a growing epidemic with devastating human, social and economic impact. It is associated with significant changes in plasma concentrations of lipoproteins. We tested the hypothesis that lipoproteins modulate the function and survival of insulin-secreting cells. We first detected the presence of several receptors that participate in the binding and processing of plasma lipoproteins and confirmed the internalization of fluorescent LDL and HDL particles in insulin-secreting β-cells. Purified human VLDL and LDL particles reduced insulin mRNA levels and β-cell proliferation, and induced a dose-dependent increase in the rate of apoptosis. In mice lacking the LDL receptor, islets showed a dramatic decrease in LDL uptake and were partially resistant to apoptosis caused by LDL. VLDL-induced apoptosis of β-cells involved caspase-3 cleavage and reduction in levels of the c-Jun N-terminal (JNK) Interacting Protein-1 (IB1/JIP-1). In contrast, the pro-apoptotic signaling of lipoproteins was antagonized by HDL particles or by a small peptide inhibitor of JNK. The protective effects of HDL were mediated, in part, by inhibition of caspase-3 cleavage and activation of the protein kinase Akt/PKB. Heart disease is a major cause of morbidity and mortality among patients with diabetes. When heart failure is refractory to medical therapy and cannot be improved by electrical resynchronization, percutaneous angioplasty or coronary graft bypass surgery, heart transplantation remains a "last resort" therapy. Nevertheless, it is limited by the side effects of immunosuppressive drugs and chronic rejection. Localized expression of immunomodulatory genes in the donor organ can create a state of immune privilege within the graft, and was performed in rodent hearts by infecting cells with an adenovirus encoding indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the catabolism of tryptophane. Other strategies are based on genetic manipulation of dendritic cells (DCs) with immunosuppressive genes and in vitro exposure of DCs to agents that prevent their maturation by inflammatory cytokines. Finally, we used 5-bromo-2'-deoxyuridine, which is incorporated into DNA and diluted with cell division, to identify long-term label retaining cells in the adult rodent heart. The majority of these cells were positive for the stem cell antigen-1 (Sca-1) and negative for the endothelial precursor marker CD31. They formed cardiospheres in vitro and showed differentiation potential into mesenchymal cell lineages. When cultured in cardiomyogenic differentiation medium, they expressed cardiac-specific genes. Taken together, these data provide evidence of slow-cycling stem cells in the rodent heart. Chronic shortage of donor organs opens the way to cardiac stem cell therapy in humans, although the long way from animal experimentation to routine therapy in patients may still take several years. - Du diabète de type 2 à la maladie coronarienne : trois études sur les dysfonctions de la cellule sécrétrice d'insuline induites par les dyslipidémies, l'immunomodulation dans la transplantation cardiaque, et la thérapie par des cellules souches myocardiques. Le diabète de type 2 a pris les dimensions d'une épidémie, avec des conséquences sociales et économiques dont nous n'avons pas encore pris toute la mesure. La maladie s'accompagne souvent d'une dyslipidémie caractérisée par une hypertriglycéridémie, des taux abaissés de cholestérol HDL, et des concentrations de cholestérol LDL à la limite supérieure de ce qui est considéré comme acceptable. L'hypothèse à la base de cette étude est qu'une modification des taux plasmatiques de lipoprotéines pourrait avoir une influence directe sur la cellule β sécrétrice d'insuline en modifiant sa fonction, sa durée de vie et son taux de régénération. Dans un premier temps, nous avons mis en évidence, sur la cellule β, la présence de plusieurs récepteurs impliqués dans la captation des lipoprotéines. Nous avons confirmé la fonctionnalité de ces récepteurs en suivant l'internalisation de LDL et de HDL marqués. En présence de VLDL ou de LDL humains, nous avons observé une diminution de la transcription du gène de l'insuline, une prolifération cellulaire réduite, et une augmentation de l'apoptose, toutes fonctions de la dose et du temps d'exposition. L'apoptose induite par les VLDL passe par une activation de la caspase-3 et une réduction du taux de la protéine IB1/JIP-1 (Islet Brain1/JNK Interacting Protein 1), dont une mutation est associée à une forme monogénique de diabète de type 2. Par opposition, les HDL, ainsi que des peptides inhibiteurs de JNK, sont capables de contrer la cascade pro-apoptotique déclenchée, respectivement, par les LDL et les VLDL. Ces effets protecteurs comprennent l'inhibition du clivage de la caspase-3 et l'activation de la protéine kinase Akt/PKB. En conclusion, les lipoprotéines sont des éléments clés de la survie de la cellule β, et pourraient contribuer au dysfonctionnement observé dans le pancréas endocrine au cours du développement du diabète. La maladie cardiaque, et plus particulièrement la maladie coronarienne, est une cause majeure de morbidité et de mortalité chez les patients atteints de diabète. Plusieurs stratégies sont utilisées quotidiennement pour pallier les atteintes cardiaques: traitements médicamenteux, électromécaniques par resynchronisation électrique, ou communément appelés « interventionnels » lorsqu'ils font appel à l'angioplastie percutanée. La revascularisation du myocarde par des pontages coronariens donne également de très bons résultats dans certaines situations. Il existe toutefois des cas où plus aucune de ces approches n'est suffisante. La transplantation cardiaque est alors la thérapie de choix pour un nombre restreint de patients. La thérapie génique, en permettant l'expression locale de gènes immunomodulateurs dans l'organe greffé, permet de diminuer les réactions de rejet inhérentes à toute transplantation (à l'exception de celles réalisées entre deux jumeaux homozygotes). Nous avons appliqué chez des rongeurs cette stratégie en infectant le coeur greffé avec un adénovirus codant pour l'enzyme indoleamine 2,3-dioxygénase (IDO), une enzyme clé dans le catabolisme du tryptophane. Nous avons procédé de manière identique in vitro en surexprimant IDO dans les cellules dendritiques, dont le rôle est de présenter les antigènes aux lymphocytes Τ du receveur. Des expériences similaires ont été réalisées en traitant les cellules dendritiques avec des substances capables de prévenir, en partie du moins, leur maturation par des agents pro-inflammatoires. Finalement, nous avons exploré une stratégie utilisée couramment en hématologie, mais qui n'en est encore qu'à ses débuts au niveau cardiaque : la thérapie par des cellules souches. En traitant des rongeurs avec un marqueur qui s'incorpore dans l'ADN nucléaire, le 5-bromo- 2'-deoxyuridine, nous avons identifié une population cellulaire se divisant rarement, positive en grande partie pour l'antigène embryonnaire Sca-1 et négative pour le marqueur endothélial CD31. En culture, ces cellules forment des cardiosphères et sont capables de se différencier dans les principaux types tissulaires mésenchymateux. Dans un milieu de differentiation adéquat, ces cellules expriment des gènes cardiomyocytaires. En résumé, ces données confirment la présence chez le rongeur d'une population résidente de précurseurs myocardiques. En addenda, on trouvera deux publications relatives à la cellule β productrice d'insuline. Le premier article démontre le rôle essentiel joué par la complexine dans l'insulino-sécrétion, tandis que le second souligne l'importance de la protéine IB1/JIP-1 dans la protection contre l'apoptose de la cellule β induite par certaines cytokines.
Resumo:
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.
Resumo:
Resting metabolic rate (RMR) and the thermic effect of a meal (TEM) were measured in a group of 26 prepubertal children divided into three groups: (1) children with both parents obese (n = 8, group OB2); (2) children with no obese parents and without familial history of obesity (n = 8, OB0); and (3) normal body weight children (n = 10, C). Average RMR was similar in OB2 and OB0 children (4785 +/- 274 kJ/day vs 5091 +/- 543 kJ/day), but higher (P < 0.05) than in controls (4519 +/- 322 kJ/day). Adjusted for fat-free mass (FFM) mean RMRs were comparable in the three groups of children (4891 +/- 451 kJ/day vs 5031 +/- 451 kJ/day vs 4686 +/- 451 kJ/day in OB2, OB0, and C, respectively). The thermic response to the mixed meal was similar in OB2, OB0 and C groups. The TEM calculated as the percentage of RMR was lower (P < 0.05) in obese than in control children: 10.2% +/- 3.1% vs 10.9% +/- 4.3% vs 14.0% +/- 4.3% in OB2, OB0, and C, respectively. The similar RMR as absolute value as well as adjusted for FFM, and the comparable thermic effect of food in the obese children with or without familial history of obesity, failed to support the view that family history of obesity can greatly influence the RMR and the TEM of the obese child with obese parents.
Resumo:
PURPOSE: Retinal degeneration is associated with iron accumulation in several rodent models in which iron-regulating proteins are impaired. Oxidative stress is catalyzed by unbound iron. METHODS: The role of the heavy chain of ferritin, which sequesters iron, in regulating the thickness of the photoreceptor nuclear layer in the 4- and 16-month-old wild-type H ferritin (HFt(+/+)) and heterozygous H ferritin (HFt(+/-)) mice was investigated, before and 12 days after exposure to 13,000-lux light for 24 hours. The regulation of gene expression of the various proteins involved in iron homeostasis, such as transferrin, transferrin receptor, hephaestin, ferroportin, iron regulatory proteins 1 and 2, hepcidin, ceruloplasmin, and heme-oxygenase 1, was analyzed by quantitative (q)RT-PCR during exposure (2, 12, and 24 hours) and 24 hours after 1 day of exposure in the 4-month-old HFt(+/+) and HFt(+/-) mouse retinas. RESULTS: Retinal degeneration in the 4-month-old HFt(+/-) mice was more extensive than in the HFt(+/+) mice. Yet, it was more extensive in both of the 16-month-old mouse groups, revealing the combined effect of age and excessive light. Injury caused by excessive light modified the temporal gene expression of iron-regulating proteins similarly in the HFt(+/-) and HFt(+/+) mice. CONCLUSIONS: Loss of one allele of H ferritin appears to increase light-induced degeneration. This study highlighted that oxidative stress related to light-induced injury is associated with major changes in gene expression of iron metabolism proteins.
Resumo:
Fasting is associated with significant changes in nutrient metabolism, many of which are governed by transcription factors that regulate the expression of rate-limiting enzymes. One factor that plays an important role in the metabolic response to fasting is the peroxisome proliferator-activated receptor alpha (PPARalpha). To gain more insight into the role of PPARalpha during fasting, and into the regulation of metabolism during fasting in general, a search for unknown PPARalpha target genes was performed. Using subtractive hybridization (SABRE) comparing liver mRNA from wild-type and PPARalpha null mice, we isolated a novel PPARalpha target gene, encoding the secreted protein FIAF (for fasting induced adipose factor), that belongs to the family of fibrinogen/angiopoietin-like proteins. FIAF is predominantly expressed in adipose tissue and is strongly up-regulated by fasting in white adipose tissue and liver. Moreover, FIAF mRNA is decreased in white adipose tissue of PPARgamma +/- mice. FIAF protein can be detected in various tissues and in blood plasma, suggesting that FIAF has an endocrine function. Its plasma abundance is increased by fasting and decreased by chronic high fat feeding. The data suggest that FIAF represents a novel endocrine signal involved in the regulation of metabolism, especially under fasting conditions.
Resumo:
Objective: The pre-treatment of tumor neo-vessels by photodynamic therapy (PDT) was shown to improve the distribution of chemotherapy administered subsequently. However, the precise mechanism by which PDT modifies the tumor vasculature is unknown. We have recently shown that leukocyteendothelial cell interaction was essential for PDT induced drug delivery to normal tissue. Our purpose was to determine if PDT could enhance drug distribution in malignant mesothelioma and if a comparable role for leucocytes existed.Methods: We grew human mesothelioma xenografts (H-meso-1) in the dorsal skinfold chambers of nude mice (n = 28). The rolling, sticking and recruitment of leucocytes was assessed in tumor and normal vessels following PDT (Visudyne 0?4 mg/kg, fluence rate 200 mW/cm2, fluence 60 J/cm2) using intravital microscopy. In parallel, the distribution of a macromolecule (FITC dextran, 2000 kDa) administered after PDT was determined. We compared these variables in control (no PDT), PDT + IgG (non specific antibody) and PDT + pan-selectin antibody (monoclonal P-E-L selectin antibody).Results: PDT significantly enhanced the distribution of FITC dextran in mesothelioma xenografts compared to controls. Interestingly, PDT enhanced the leukocyte-endothelial interaction significantly (rolling and recruitment)in tumor and surrounding normal vessels compared to controls. Leukocyte recruitment was significantly down-regulated by pan-selectin antibodies in tumor tissues. However, the suppression of leucocyte recruitement did not affect the extravasation of FITC-dextran in tumor tissue.Conclusion:PDTpre-treatment of the mesothelioma vasculature can enhance the distribution of macromolecular drugs administered subsequently. However, unlike normal vessels, leukocyte-endothelial cell interaction is not required for PDT induced leakage.