972 resultados para indoor pollution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Augmented reality (AR) is been increasingly used in mobile devices. Most of the available applications are set to work outdoors, mainly due to the availability of a reliable positioning system. Nevertheless, indoor (smart) spaces offer a lot of opportunities of creating new service concepts. In particular, in this paper we explore the applicability of mobile AR to hospitality environments (hotels and similar establishments). From the state-of-the-art of technologies and applications, a portfolio of services has been identified and a prototype using off-the-shelf technologies has been designed. Our objective is to identify the next technological challenges to overcome in order to have suitable underlying infrastructures and innovative services which enhance the traveller?s experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an optimization-based framework to minimize the energy consumption in a sensor network when using an indoor localization system based on the combination of received signal strength (RSS) and pedestrian dead reckoning (PDR). The objective is to find the RSS localization frequency and the number of RSS measurements used at each localization round that jointly minimize the total consumed energy, while ensuring at the same time a desired accuracy in the localization result. The optimization approach leverages practical models to predict the localization error and the overall energy consumption for combined RSS-PDR localization systems. The performance of the proposed strategy is assessed through simulation, showing energy savings with respect to other approaches while guaranteeing a target accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the probabilistic modelling af a Bayesian-based mechanism to improve location estimates of an already deployed location system by fusing its outputs with low-cost binary sensors. This mechanism takes advantege of the localization captabilities of different technologies usually present in smart environments deployments. The performance of the proposed algorithm over a real sensor deployment is evaluated using simulated and real experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se propone una metodología que nos permita evaluar un óptimo manejo de la fertirrigación integrando aspectos agronómicos y medioambientales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a particle filtering (PF) method for indoor tracking using radio frequency identification (RFID) based on aggregated binary measurements. We use an Ultra High Frequency (UHF) RFID system that is composed of a standard RFID reader, a large set of standard passive tags whose locations are known, and a newly designed, special semi-passive tag attached to an object that is tracked. This semi-passive tag has the dual ability to sense the backscatter communication between the reader and other passive tags which are in its proximity and to communicate this sensed information to the reader using backscatter modulation. We refer to this tag as a sense-a-tag (ST). Thus, the ST can provide the reader with information that can be used to determine the kinematic parameters of the object on which the ST is attached. We demonstrate the performance of the method with data obtained in a laboratory environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel Radio Frequency Identification (RFID) system for accurate indoor localization. The system is composed of a standard Ultra High Frequency (UHF), ISO-18006C compliant RFID reader, a large set of standard passive RFID tags whose locations are known, and a newly developed tag-like RFID component that is attached to the items that need to be localized. The new semi-passive component, referred to as sensatag (sense-a-tag), has a dual functionality wherein it can sense the communication between the reader and standard tags which are in its proximity, and also communicate with the reader like standard tags using backscatter modulation. Based on the information conveyed by the sensatags to the reader, localization algorithms based on binary sensor principles can be developed. We present results from real measurements that show the accuracy of the proposed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photovoltaic modules based on thin film technology are gaining importance in the photovoltaic market, and module installers and plant owners have increasingly begun to request methods of performing module quality control. These modules pose additional problems for measuring power under standard test conditions (STC), beyond problems caused by the temperature of the module and the ambient variables. The main difficulty is that the modules’ power rates may vary depending both on the amount of time they have been exposed to the sun during recent hours and on their history of sunlight exposure. In order to assess the current state of the module, it is necessary to know its sunlight exposure history. Thus, an easily accomplishable testing method that ensures the repeatability of the measurements of the power generated is needed. This paper examines different tests performed on commercial thin film PV modules of CIS, a-Si and CdTe technologies in order to find the best way to obtain measurements. A method for obtaining indoor measurements of these technologies that takes into account periods of sunlight exposure is proposed. Special attention is paid to CdTe as a fast growing technology in the market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coarse particles of aerodynamic diameter between 2.5 and 10 mm (PMc) are produced by a range of natural (windblown dust and sea sprays) and anthropogenic processes (non-exhaust vehicle emissions, industrial, agriculture, construction and quarrying activities). Although current ambient air quality regulations focus on PM2.5 and PM10, coarse particles are of interest from a public health point of view as they have been associated with certain mortality and morbidity outcomes. In this paper, an analysis of coarse particle levels in three European capitals (London, Madrid and Athens) is presented and discussed. For all three cities we analysed data from both traffic and urban background monitoring sites. The results showed that the levels of coarse particles present significant seasonal, weekly and daily variability. Their wind driven and non-wind driven resuspension as well as their roadside increment due to traffic were estimated. Both the local meteorological conditions and the air mass history indicating long-range atmospheric transport of particles of natural origin are significant parameters that influence the levels of coarse particles in the three cities especially during episodic events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last ten years, Salamanca has been considered among the most polluted cities in México. This paper presents a Self-Organizing Maps (SOM) Neural Network application to classify pollution data and automatize the air pollution level determination for Sulphur Dioxide (SO2) in Salamanca. Meteorological parameters are well known to be important factors contributing to air quality estimation and prediction. In order to observe the behavior and clarify the influence of wind parameters on the SO2 concentrations a SOM Neural Network have been implemented along a year. The main advantages of the SOM is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. The results show a significative correlation between pollutant concentrations and some environmental variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salamanca, situated in center of Mexico is among the cities which suffer most from the air pollution in Mexico. The vehicular park and the industry, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Sulphur Dioxide (SO2). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables and air pollutant concentrations of SO2. Before the prediction, Fuzzy c-Means and K-means clustering algorithms have been implemented in order to find relationship among pollutant and meteorological variables. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of SO2 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results showed that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to complement ISFOC’s characterization capabilities, a Helios 3198 CPV Solar Simulator was installed in summer 2010. This Solar Simulator, based on a parabolic mirror and a high-intensity, small area Xenon flash lamp was developed by the Instituto de Energía Solar in Madrid [1] and is manufactured and distributed by Soldaduras Avanzadas [2]. This simulator is used not only for R&D purposes, but as a quality control tool for incoming modules that are to be installed in ISFOC’s CPV plants. In this paper we will discuss the results of recent measurements of close to 5000 modules, the entire production of modules corresponding to a small CPV power plant (200 kWp). We scrutinize the resultant data for signs of drift in the measurements, and analyze the light quality before and after, to check for changes in spectrum or spatial uniformity.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new method to accurately locate persons indoors by fusing inertial navigation system (INS) techniques with active RFID technology. A foot-mounted inertial measuring units (IMUs)-based position estimation method, is aided by the received signal strengths (RSSs) obtained from several active RFID tags placed at known locations in a building. In contrast to other authors that integrate IMUs and RSS with a loose Kalman filter (KF)-based coupling (by using the residuals of inertial- and RSS-calculated positions), we present a tight KF-based INS/RFID integration, using the residuals between the INS-predicted reader-to-tag ranges and the ranges derived from a generic RSS path-loss model. Our approach also includes other drift reduction methods such as zero velocity updates (ZUPTs) at foot stance detections, zero angular-rate updates (ZARUs) when the user is motionless, and heading corrections using magnetometers. A complementary extended Kalman filter (EKF), throughout its 15-element error state vector, compensates the position, velocity and attitude errors of the INS solution, as well as IMU biases. This methodology is valid for any kind of motion (forward, lateral or backward walk, at different speeds), and does not require an offline calibration for the user gait. The integrated INS+RFID methodology eliminates the typical drift of IMU-alone solutions (approximately 1% of the total traveled distance), resulting in typical positioning errors along the walking path (no matter its length) of approximately 1.5 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deployment of nodes in Wireless Sensor Networks (WSNs) arises as one of the biggest challenges of this field, which involves in distributing a large number of embedded systems to fulfill a specific application. The connectivity of WSNs is difficult to estimate due to the irregularity of the physical environment and affects the WSN designers? decision on deploying sensor nodes. Therefore, in this paper, a new method is proposed to enhance the efficiency and accuracy on ZigBee propagation simulation in indoor environments. The method consists of two steps: automatic 3D indoor reconstruction and 3D ray-tracing based radio simulation. The automatic 3D indoor reconstruction employs unattended image classification algorithm and image vectorization algorithm to build the environment database accurately, which also significantly reduces time and efforts spent on non-radio propagation issue. The 3D ray tracing is developed by using kd-tree space division algorithm and a modified polar sweep algorithm, which accelerates the searching of rays over the entire space. Signal propagation model is proposed for the ray tracing engine by considering both the materials of obstacles and the impact of positions along the ray path of radio. Three different WSN deployments are realized in the indoor environment of an office and the results are verified to be accurate. Experimental results also indicate that the proposed method is efficient in pre-simulation strategy and 3D ray searching scheme and is suitable for different indoor environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n this article, a tool for simulating the channel impulse response for indoor visible light communications using 3D computer-aided design (CAD) models is presented. The simulation tool is based on a previous Monte Carlo ray-tracing algorithm for indoor infrared channel estimation, but including wavelength response evaluation. The 3D scene, or the simulation environment, can be defined using any CAD software in which the user specifies, in addition to the setting geometry, the reflection characteristics of the surface materials as well as the structures of the emitters and receivers involved in the simulation. Also, in an effort to improve the computational efficiency, two optimizations are proposed. The first one consists of dividing the setting into cubic regions of equal size, which offers a calculation improvement of approximately 50% compared to not dividing the 3D scene into sub-regions. The second one involves the parallelization of the simulation algorithm, which provides a computational speed-up proportional to the number of processors used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design and application of the Atmospheric Evaluation and Research Integrated model for Spain (AERIS). Currently, AERIS can provide concentration profiles of NO2, O3, SO2, NH3, PM, as a response to emission variations of relevant sectors in Spain. Results are calculated using transfer matrices based on an air quality modelling system (AQMS) composed by the WRF (meteorology), SMOKE (emissions) and CMAQ (atmospheric-chemical processes) models. The AERIS outputs were statistically tested against the conventional AQMS and observations, revealing a good agreement in both cases. At the moment, integrated assessment in AERIS focuses only on the link between emissions and concentrations. The quantification of deposition, impacts (health, ecosystems) and costs will be introduced in the future. In conclusion, the main asset of AERIS is its accuracy in predicting air quality outcomes for different scenarios through a simple yet robust modelling framework, avoiding complex programming and long computing times.