923 resultados para implicit dynamic analysis
Resumo:
This paper describes how worst-case error analysis can be applied to solve some of the practical issues in the development and implementation of a low power, high performance radix-4 FFT chip for digital video applications. The chip has been fabricated using a 0.6 µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-time video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8×8 mm and dissipates 1 W, leading to a cost-effective silicon solution for high quality video processing applications. The analysis focuses on the effect that different radix-4 architectural configurations and finite wordlengths has on the FFT output dynamic range. These issues are addressed using both mathematical error models and through extensive simulation.
Resumo:
Analysis of the Irish state's administrative system is an unaccountably neglected area of systematic academic inquiry. This is all the more difficult to account for in view of the dynamic relationship between government actors and the public bureaucracy in realizing political goals. This paper identifies some distinguishing institutional features and dominant trends in Irish politico-administrative governance, and suggests avenues for future inquiry. The paper begins with an examination of the literature on administrative system change, with a focus on the New Public Management literature. Following this, the Irish case is profiled, identifying the evolution of ministerial departments and of state agencies by successive Irish governments, including patterns of agency creation and termination over time. Particular attention is given to the period 1989-2010, which has been one of quite rapid and complex organizational change within the state's bureaucratic apparatus. © 2012 Political Studies Association of Ireland.
Resumo:
This paper presents a three-dimensional continuum damage mechanics-based material model which was implemented in an implicit finite element code to simulate the progressive intralaminar degradation of fibre reinforced laminates. The damage model is based on ply failure mechanisms and uses seven damage variables assigned to tensile, compressive and shear damage at a ply level. Non-linear behaviour and irreversibility were taken into account and modelled. Some issues on the numerical implementation of the damage model are discussed and solutions proposed. Applications of the methodology are presented in Part II
Numerical analysis of intralaminar failure mechanisms in composite structures, Part II: Applications
Resumo:
A three-dimensional continuum damage mechanics-based material model was implemented in an implicit Finite Element code to simulate the progressive intralaminar degradation of fibre reinforced laminates based on ply failure mechanisms. This paper presents some structural applications of the progressive failure model implemented. The focus is on the non-linear response of the shear failure mode and its interaction with other failure modes. Structural applications of the damage model show that the proposed model is able to reproduce failure loads and patterns observed experimentally.
Resumo:
In this paper we address issues relating to vulnerability to economic exclusion and levels of economic exclusion in Europe. We do so by applying latent class models to data from the European Community Household Panel for thirteen countries. This approach allows us to distinguish between vulnerability to economic exclusion and exposure to multiple deprivation at a particular point in time. The results of our analysis confirm that in every country it is possible to distinguish between a vulnerable and a non-vulnerable class. Association between income poverty, life-style deprivation and subjective economic strain is accounted for by allocating individuals to the categories of this latent variable. The size of the vulnerable class varies across countries in line with expectations derived from welfare regime theory. Between class differentiation is weakest in social democratic regimes but otherwise the pattern of differentiation is remarkably similar. The key discriminatory factor is life-style deprivation, followed by income and economic strain. Social class and employment status are powerful predictors of latent class membership in all countries but the strength of these relationships varies across welfare regimes. Individual biography and life events are also related to vulnerability to economic exclusion. However, there is no evidence that they account for any significant part of the socio-economic structuring of vulnerability and no support is found for the hypothesis that social exclusion has come to transcend class boundaries and become a matter of individual biography. However, the extent of socio-economic structuring does vary substantially across welfare regimes. Levels of economic exclusion, in the sense of current exposure to multiple deprivation, also vary systematically by welfare regime and social class. Taking both vulnerability to economic exclusion and levels of exclusion into account suggests that care should be exercised in moving from evidence on the dynamic nature of poverty and economic exclusion to arguments relating to the superiority of selective over universal social policies.
A pseudo-transient solution strategy for the analysis of delamination by means of interface elements
Resumo:
Recent efforts in the finite element modelling of delamination have concentrated on the development of cohesive interface elements. These are characterised by a bilinear constitutive law, where there is an initial high positive stiffness until a threshold stress level is reached, followed by a negative tangent stiffness representing softening (or damage evolution). Complete decohesion occurs when the amount of work done per unit area of crack surface is equal to a critical strain energy release rate. It is difficult to achieve a stable, oscillation-free solution beyond the onset of damage, using standard implicit quasi-static methods, unless a very refined mesh is used. In the present paper, a new solution strategy is proposed based on a pseudo-transient formulation and demonstrated through the modelling of a double cantilever beam undergoing Mode I delamination. A detailed analysis into the sensitivity of the user-defined parameters is also presented. Comparisons with other published solutions using a quasi-static formulation show that the pseudo-transient formulation gives improved accuracy and oscillation-free results with coarser meshes
Resumo:
Dynamic switching spectroscopy piezoresponse force microscopy is developed to separate thermodynamic and kinetic effects in local bias-induced phase transitions. The approaches for visualization and analysis of five-dimensional data are discussed. The spatial and voltage variability of relaxation behavior of the a-c domain lead zirconate-titanate surface suggest the interpretation in terms of surface charge dynamics. This approach is applicable to local studies of dynamic behavior in any system with reversible bias-induced phase transitions ranging from ferroelectrics and multiferroics to ionic systems such as batteries, fuel cells, and electroresistive materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590919]
Resumo:
Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2a phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2a. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence.
Resumo:
The hybrid test method is a relatively recently developed dynamic testing technique that uses numerical modelling combined with simultaneous physical testing. The concept of substructuring allows the critical or highly nonlinear part of the structure that is difficult to numerically model with accuracy to be physically tested whilst the remainder of the structure, that has a more predictable response, is numerically modelled. In this paper, a substructured soft-real time hybrid test is evaluated as an accurate means of performing seismic tests of complex structures. The structure analysed is a three-storey, two-by-one bay concentrically braced frame (CBF) steel structure subjected to seismic excitation. A ground storey braced frame substructure whose response is critical to the overall response of the structure is tested, whilst the remainder of the structure is numerically modelled. OpenSees is used for numerical modelling and OpenFresco is used for the communication between the test equipment and numerical model. A novel approach using OpenFresco to define the complex numerical substructure of an X-braced frame within a hybrid test is also presented. The results of the hybrid tests are compared to purely numerical models using OpenSees and a simulated test using a combination of OpenSees and OpenFresco. The comparative results indicate that the test method provides an accurate and cost effective procedure for performing
full scale seismic tests of complex structural systems.
Resumo:
Background: In recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored.
Results: We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes.
Conclusions: Although the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes.
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency periodic pulsations contained within the active power flow from different wind farms. A primary concern is excitation of existing low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of the interconnected Northern and Southern power system networks. Recently grid code requirements on the Northern Ireland power system have been updated stipulating that wind farms connected after 2005 must be able to control the magnitude of oscillations in the range of 0.25 - 1.75 Hz to within 1% of the wind farm's registered output. In order to determine whether wind farm low-frequency oscillations have a negative effect (excite other modes) or possibly a positive impact (damping of existing modes) on the power system, the oscillations at the point of connection must be measured and characterised. Using time - frequency methods, research presented in this paper has been conducted to extract signal features from measured low-frequency active power pulsations produced by wind farms to determine the effective composition of possible oscillatory modes which may have a detrimental effect on system dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.
Resumo:
Although pumped hydro storage is seen as a strategic key asset by grid operators, financing it is complicated in new liberalised markets. It could be argued that the optimum generation portfolio is now determined by the economic viability of generators based on a short to medium term return on investment. This has meant that capital intensive projects such as pumped hydro storage are less attractive for wholesale electricity companies because the payback periods are too long. In tandem a significant amount of wind power has entered the generation mix, which has resulted in operating and planning integration issues due to wind's inherent uncertain, varying spatial and temporal nature. These integration issues can be overcome using fast acting gas peaking plant or energy storage. Most analysis of wind power integration using storage to date has used stochastic optimisation for power system balancing or arbitrage modelling to examine techno-economic viability. In this research a deterministic dynamic programming long term generation expansion model is employed to optimise the generation mix, total system costs and total carbon dioxide emissions, and unlike other studies calculates reserve to firm wind power. The key finding of this study is that the incentive to build capital-intensive pumped hydro storage to firm wind power is limited unless exogenous market costs come very strongly into play. Furthermore it was demonstrated that reserve increases with increasing wind power showing the importance of ancillary services in future power systems. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Various scientific studies have explored the causes of violent behaviour from different perspectives, with psychological tests, in particular, applied to the analysis of crime factors. The relationship between bi-factors has also been extensively studied including the link between age and crime. In reality, many factors interact to contribute to criminal behaviour and as such there is a need to have a greater level of insight into its complex nature. In this article we analyse violent crime information systems containing data on psychological, environmental and genetic factors. Our approach combines elements of rough set theory with fuzzy logic and particle swarm optimisation to yield an algorithm and methodology that can effectively extract multi-knowledge from information systems. The experimental results show that our approach outperforms alternative genetic algorithm and dynamic reduct-based techniques for reduct identification and has the added advantage of identifying multiple reducts and hence multi-knowledge (rules). Identified rules are consistent with classical statistical analysis of violent crime data and also reveal new insights into the interaction between several factors. As such, the results are helpful in improving our understanding of the factors contributing to violent crime and in highlighting the existence of hidden and intangible relationships between crime factors.
Resumo:
Even though computational power used for structural analysis is ever increasing, there is still a fundamental need for testing in structural engineering, either for validation of complex numerical models or to assess material behaviour. In addition to analysis of structures using scale models, many structural engineers are aware to some extent of cyclic and shake-table test methods, but less so of ‘hybrid testing’. The latter is a combination of physical testing (e.g. hydraulic
actuators) and computational modelling (e.g. finite element modelling). Over the past 40 years, hybrid testing of engineering structures has developed from concept through to maturity to become a reliable and accurate dynamic testing technique. The hybrid test method provides users with some additional benefits that standard dynamic testing methods do not, and the method is more cost-effective in comparison to shake-table testing. This article aims to provide the reader with a basic understanding of the hybrid test method, including its contextual development and potential as a dynamic testing technique.
Resumo:
This case describes a qualitative social science research project that was conducted in 2009 and that examined the experiences of recent migrants to Northern Ireland. While background to the research and key findings are presented, the topic forms a backdrop to the case. The following aspects of the study are presented: the theoretical context; formulating the research question, design and methodology; key methodological issues; data collection and analysis; project dissemination; and research funding and reporting. The case pays particular attention to the needs and impact of different groups including the researcher, the funding body, the researcher’s employer and the researched. The significance of access, language and ethics to this study are examined. Finally, the way in which the research unfolded in an often-unpredictable way throughout the implementation process is highlighted in the narrative.