965 resultados para hydrogen bonding


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To initiate homologous recombination, sequence similarity between two DNA molecules must be searched for and homology recognized. How the search for and recognition of homology occurs remains unproven. We have examined the influences of DNA topology and the polarity of RecA–single-stranded (ss)DNA filaments on the formation of synaptic complexes promoted by RecA. Using two complementary methods and various ssDNA and duplex DNA molecules as substrates, we demonstrate that topological constraints on a small circular RecA–ssDNA filament prevent it from interwinding with its duplex DNA target at the homologous region. We were unable to detect homologous pairing between a circular RecA–ssDNA filament and its relaxed or supercoiled circular duplex DNA targets. However, the formation of synaptic complexes between an invading linear RecA–ssDNA filament and covalently closed circular duplex DNAs is promoted by supercoiling of the duplex DNA. The results imply that a triplex structure formed by non-Watson–Crick hydrogen bonding is unlikely to be an intermediate in homology searching promoted by RecA. Rather, a model in which RecA-mediated homology searching requires unwinding of the duplex DNA coupled with local strand exchange is the likely mechanism. Furthermore, we show that polarity of the invading RecA–ssDNA does not affect its ability to pair and interwind with its circular target duplex DNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although many polar residues are directly involved in transmembrane protein functions, the extent to which they contribute to more general structural features is still unclear. Previous studies have demonstrated that asparagine residues can drive transmembrane helix association through interhelical hydrogen bonding [Choma, C., Gratkowski, H., Lear, J. D. & DeGrado, W. F. (2000) Nat. Struct. Biol. 7, 161–166; and Zhou, F. X., Cocco, M. J., Russ, W. P., Brunger, A. T. & Engelman, D. M. (2000) Nat. Struct. Biol. 7, 154–160]. We have studied the ability of other polar residues to promote helix association in detergent micelles and in biological membranes. Our results show that polyleucine sequences with Asn, Asp, Gln, Glu, and His, residues capable of being simultaneously hydrogen bond donors and acceptors, form homo- or heterooligomers. In contrast, polyleucine sequences with Ser, Thr, and Tyr do not associate more than the polyleucine sequence alone. The results therefore provide experimental evidence that interactions between polar residues in the helices of transmembrane proteins may serve to provide structural stability and oligomerization specificity. Furthermore, such interactions can allow structural flexibility required for the function of some membrane proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. The enzyme is a class I aldolase whose reaction mechanism involves formation of Schiff base intermediates between Lys-133 and a keto substrate. A covalent adduct was trapped by flash freezing KDPG aldolase crystals soaked with 10 mM pyruvate in acidic conditions at pH 4.6. Structure determination to 1.95-Å resolution showed that pyruvate had undergone nucleophilic attack with Lys-133, forming a protonated carbinolamine intermediate, a functional Schiff base precursor, which was stabilized by hydrogen bonding with active site residues. Carbinolamine interaction with Glu-45 indicates general base catalysis of several rate steps. Stereospecific addition is ensured by aromatic interaction of Phe-135 with the pyruvate methyl group. In the native structure, Lys-133 donates all of its hydrogen bonds, indicating the presence of an ɛ-ammonium salt group. Nucleophilic activation is postulated to occur by proton transfer in the monoprotonated zwitterionic pair (Glu-45/Lys-133). Formation of the zwitterionic pair requires prior side chain rearrangement by protonated Lys-133 to displace a water molecule, hydrogen bonded to the zwitterionic residues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A β-hairpin conformation has been characterized in crystals of the decapeptide t-butoxycarbonyl-Leu-Val-βPhe-Val-DPro-Gly-Leu-βPhe-Val-Val-methyl ester [βPhe; (S)-β3 homophenylalanine] by x-ray diffraction. The polypeptide chain reversal is nucleated by the centrally positioned DPro-Gly segment, which adopts a type-I′ β-turn conformation. Four intramolecular cross-strand hydrogen bonds stabilize the peptide fold. The βPhe(3) and βPhe(8) residues occupy facing positions on the hairpin, with the side chains projecting on opposite faces of the β-sheet. At the site of insertion of β-residues, the polarity of the peptide units along each strand reverses, as compared with the α-peptide segments. In this analog, a small segment of a polar sheet is observed, where adjacent CO and NH groups line up in opposite directions in each strand. In the crystal, an extended β-sheet is formed by hydrogen bonding between strands of antiparallel pairs of β-hairpins. The crystallographic parameters for C65H102N10O13⋅ 3H2O are: space group P212121; a = 19.059(8) Å, b = 19.470(2) Å, c = 21.077(2) Å; Z = 4; agreement factor R1 = 9.12% for 3,984 data observed >4σ(F) and a resolution of 0.90 Å.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oligonucleotides consisting of the isonucleoside repeating unit 2′,5′-anhydro-3′-deoxy-3′-(thymin-1-yl)-d-mannitol (4) were synthesized with the monomeric unit 4 incorporated into oligonucleotides as 1′→4′ linkage 4a (oligomer I) or 6′→4′ linkage 4b (oligomer II). The hybrid properties of the two oligonucleotides I and II with their complementary strands were investigated by thermal denaturation and CD spectra. Oligonucleotide I (4a) formed a stable duplex with d(A)14 with a slightly reduced Tm value of 36.6°C, relative to 38.2°C for the control duplex d(T)14/d(A)14, but oligomer II (4b) failed to hybridize with a DNA complementary single strand. The spectrum of the duplex oligomer I/d(A)14 showed a positive CD band at 217 nm and a negative CD band at 248 nm attributable to a B-like conformation. Molecular modeling showed that in the case of oligomer I the C6′ hydroxy group of each unit could be located in the groove area when hybridized to the DNA single strand, which might contribute additional hydrogen bonding to the stability of duplex formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibronectin type III modules contain approximately 90 residues and are an extremely common building block of animal proteins. Despite containing a complex all-beta-sheet topology and eight prolines, the refolding of the 10th type III module of human fibronectin has been found to be very rapid, with native core packing, amide hydrogen bonding, and backbone conformation all recovered within 1 s at 5 degrees C. These observations indicate that this domain can overcome many structural characteristics often thought to slow the folding process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Determination of the crystal structure of an "open" unliganded active mutant (T141D) form of the Escherichia coli phosphate receptor for active transport has allowed calculation of the electrostatic surface potential for it and two other comparably modeled receptor structures (wild type and D137N). A discovery of considerable implication is the intensely negative potential of the phosphate-binding cleft. We report similar findings for a sulfate transport receptor, a DNA-binding protein, and, even more dramatically, redox proteins. Evidently, for proteins such as these, which rely almost exclusively on hydrogen bonding for anion interactions and electrostatic balance, a noncomplementary surface potential is not a barrier to binding. Moreover, experimental results show that the exquisite specificity and high affinity of the phosphate and sulfate receptors for unions are insensitive to modulations of charge potential, but extremely sensitive to conditions that leave a hydrogen bond donor or acceptor unpaired.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the efficiency of packing by calculating intramolecular packing density above and below peptide planes of internal beta-pleated sheet residues in five globular proteins. The orientation of interest was chosen to allow study of regions that are approximately perpendicular to the faces of beta-pleated sheets. In these locations, nonbonded van der Waals packing interactions predominate over hydrogen bonding and solvent interactions. We observed considerable variability in packing densities within these regions, confirming that the interior packing of a protein does not result in uniform occupation of the available space. Patterns of fluctuation in packing density suggest that the regular backbone-to-backbone network of hydrogen bonds is not likely to be interrupted to maximize van der Waals interactions. However, high-density packing tends to occur toward the ends of beta-structure strands where hydrogen bonds are more likely to involve nonpolar side-chain groups or solvent molecules. These features result in internal protein folding with a central low-density core surrounded by a higher-density subsurface shell, consistent with our previous calculations regarding overall protein packing density.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Is the pathway of protein folding determined by the relative stability of folding intermediates, or by the relative height of the activation barriers leading to these intermediates? This is a fundamental question for resolving the Levinthal paradox, which stated that protein folding by a random search mechanism would require a time too long to be plausible. To answer this question, we have studied the guanidinium chloride (GdmCl)-induced folding/unfolding of staphylococcal nuclease [(SNase, formerly EC 3.1.4.7; now called microbial nuclease or endonuclease, EC 3.1.31.1] by stopped-flow circular dichroism (CD) and differential scanning microcalorimetry (DSC). The data show that while the equilibrium transition is a quasi-two-state process, kinetics in the 2-ms to 500-s time range are triphasic. Data support the sequential mechanism for SNase folding: U3 <--> U2 <--> U1 <--> N0, where U1, U2, and U3 are substates of the unfolded protein and N0 is the native state. Analysis of the relative population of the U1, U2, and U3 species in 2.0 M GdmCl gives delta-G values for the U3 --> U2 reaction of +0.1 kcal/mol and for the U2 --> U1 reaction of -0.49 kcal/mol. The delta-G value for the U1 --> N0 reaction is calculated to be -4.5 kcal/mol from DSC data. The activation energy, enthalpy, and entropy for each kinetic step are also determined. These results allow us to make the following four conclusions. (i) Although the U1, U2, and U3 states are nearly isoenergetic, no random walk occurs among them during the folding. The pathway of folding is unique and sequential. In other words, the relative stability of the folding intermediates does not dictate the folding pathway. Instead, the folding is a descent toward the global free-energy minimum of the native state via the least activation path in the vast energy landscape. Barrier avoidance leads the way, and barrier height limits the rate. Thus, the Levinthal paradox is not applicable to the protein-folding problem. (ii) The main folding reaction (U1 --> N0), in which the peptide chain acquires most of its free energy (via van der Waals' contacts, hydrogen bonding, and electrostatic interactions), is a highly concerted process. These energy-acquiring events take place in a single kinetic phase. (iii) U1 appears to be a compact unfolded species; the rate of conversion of U2 to U1 depends on the viscosity of solution. (iv) All four relaxation times reported here depend on GdmCl concentrations: it is likely that none involve the cis/trans isomerization of prolines. Finally, a mechanism is presented in which formation of sheet-like chain conformations and a hydrophobic condensation event precede the main-chain folding reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since it has not been possible to crystallize the actomyosin complex, the x-ray structures of the individual proteins together with data obtained by fiber diffraction and electron microscopy have been used to build detailed models of filamentous actin (f-actin) and the actomyosin rigor complex. In the f-actin model, a single monomer uses 10 surface loops and two alpha-helices to make sometimes complicated interactions with its four neighbors. In the myosin molecule, both the essential and regulatory light chains show considerable structural homology to calmodulin. General principles are evident in their mode of attachment to the target alpha-helix of the myosin heavy chain. The essential light chain also makes contacts with other parts of the heavy chain and with the regulatory light chain. The actomyosin rigor interface is extensive, involving interaction of a single myosin head with regions on two adjacent actin monomers. A number of hydrophobic residues on the apposing faces of actin and myosin contribute to the main binding site. This site is flanked on three sides by charged myosin surface loops that form predominantly ionic interactions with adjacent regions of actin. Hydrogen bonding is likely to play a significant role in actin-actin and actin-myosin interactions since many of the contacts involve loops. The model building approach used with actomyosin is applicable to other multicomponent assemblies of biological interest and is a powerful method for revealing molecular interactions and providing insights into the mode of action of the assemblies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report presents evidence that a reduced pyrrolo[1,2-a]benzimidazole (PBI) cleaves DNA as a result of phosphate alkylation followed by hydrolysis of the resulting phosphate triester. The base-pair specificity of the phosphate alkylation results from Hoogsteen-type hydrogen bonding of the reduced PBI in the major groove at only A.T and G.C base pairs. Alkylated phosphates were detected by 31P NMR and the cleavage products were detected by 1H NMR and HPLC. Evidence is also presented that a reduced PBI interacts with DNA in the major groove rather than in the minor groove or by intercalation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solution structures of calicheamicin gamma 1I, its cycloaromatized analog (calicheamicin epsilon), and its aryl tetrasaccharide complexed to a common DNA hairpin duplex have been determined by NMR and distance-refined molecular dynamics computations. Sequence specificity is associated with carbohydrate-DNA recognition that places the aryl tetrasaccharide component of all three ligands in similar orientations in the minor groove at the d(T-C-C-T).d(A-G-G-A) segment. The complementary fit of the ligands and the DNA minor groove binding site creates numerous van der Waals contacts as well as hydrogen bonding interactions. Notable are the iodine and sulfur atoms of calicheamicin that hydrogen bond with the exposed amino proton of the 5'- and 3'-guanines, respectively, of the d(A-G-G-A) segment. The sequence-specific carbohydrate binding orients the enediyne aglycone of calicheamicin gamma 1I such that its C3 and C6 proradical centers are adjacent to the cleavage sites. While the enediyne aglycone of calicheamicin gamma 1I is tilted relative to the helix axis and spans the minor groove, the cycloaromatized aglycone is aligned approximately parallel to the helix axis in the respective complexes. Specific localized conformational perturbations in the DNA have been identified from imino proton complexation shifts and changes in specific sugar pucker patterns on complex formation. The helical parameters for the carbohydrate binding site are comparable with corresponding values in B-DNA fibers while a widening of the groove is observed at the adjacent aglycone binding site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structure of the decanucleotide d(CGCAATTGCG)2 has been solved by a combination of molecular replacement and heavy-atom procedures and has been refined to an R factor of 20.2% at 2.7 A. It is not a fully base-paired duplex but has a central core of eight Watson-Crick base pairs flanked by unpaired terminal guanosines and cytosines. These participate in hydrogen-bonding arrangements with adjacent decamer duplexes in the crystal lattice. The unpaired guanosines are bound in the G+C regions of duplex minor grooves. The cytosines have relatively high mobility, even though they are constrained to be in one region where they are involved in base-paired triplets with G.C base pairs. The 5'-AATT sequence in the duplex region has a narrow minor groove, providing further confirmation of the sequence-dependent nature of groove width.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examine how the polypeptide chain in protein crystal structures exploits the multivalent hydrogen-bonding potential of bound water molecules. This shows that multiple interactions with a single water molecule tend to occur locally along the chain. A distinctive internal-coordinate representation of the local water-binding segments reveals several consensus conformations. The fractional water occupancy of each was found by comparison of the total number of conformations in the database regardless of the presence or absence of bound water. The water molecule appears particularly frequently in type II beta-turn geometries and an N-terminal helix feature. This work constitutes a first step into assessing not only the generality but also the significance of specific water binding in globular proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paclitaxel (formerly called taxol), an important anticancer drug, inhibits cell replication by binding to and stabilizing microtubule polymers. As drug-receptor interactions are governed by the three-dimensional stereochemistries of both participants, we have determined the crystal structure of paclitaxel to identify its conformational preferences that may be related to biological activity. The monoclinic crystals contain two independent paclitaxel molecules in the asymmetric unit plus several water and dioxane solvent molecules. Taxane ring conformation is very similar in both paclitaxel molecules and is similar to the taxane ring conformation found in the crystal structure of the paclitaxel analogue docetaxel (formerly called taxotere). The two paclitaxel molecules have carbon-13 side-chain conformations that differ from each other and from that of the corresponding side chain in the docetaxel crystal structure. The carbon-13 side-chain conformation of one paclitaxel molecule is similar to what was proposed from NMR studies done in polar solvents, while that of the other paclitaxel molecule is different and hitherto unobserved. The paclitaxel molecules interact with each other and with solvent atoms through an extensive network of hydrogen bonds. Analysis of the hydrogen-bonding network together with structure-activity studies may suggest which atoms of paclitaxel are important for binding to microtubule receptors.