873 resultados para hydrodynamic
Resumo:
The coastal ocean is a complex environment with extremely dynamic processes that require a high-resolution and cross-scale modeling approach in which all hydrodynamic fields and scales are considered integral parts of the overall system. In the last decade, unstructured-grid models have been used to advance in seamless modeling between scales. On the other hand, the data assimilation methodologies to improve the unstructured-grid models in the coastal seas have been developed only recently and need significant advancements. Here, we link the unstructured-grid ocean modeling to the variational data assimilation methods. In particular, we show results from the modeling system SANIFS based on SHYFEM fully-baroclinic unstructured-grid model interfaced with OceanVar, a state-of-art variational data assimilation scheme adopted for several systems based on a structured grid. OceanVar implements a 3DVar DA scheme. The combination of three linear operators models the background error covariance matrix. The vertical part is represented using multivariate EOFs for temperature, salinity, and sea level anomaly. The horizontal part is assumed to be Gaussian isotropic and is modeled using a first-order recursive filter algorithm designed for structured and regular grids. Here we introduced a novel recursive filter algorithm for unstructured grids. A local hydrostatic adjustment scheme models the rapidly evolving part of the background error covariance. We designed two data assimilation experiments using SANIFS implementation interfaced with OceanVar over the period 2017-2018, one with only temperature and salinity assimilation by Argo profiles and the second also including sea level anomaly. The results showed a successful implementation of the approach and the added value of the assimilation for the active tracer fields. While looking at the broad basin, no significant improvements are highlighted for the sea level, requiring future investigations. Furthermore, a Machine Learning methodology based on an LSTM network has been used to predict the model SST increments.
Resumo:
In recent years, developed countries have turned their attention to clean and renewable energy, such as wind energy and wave energy that can be converted to electrical power. Companies and academic groups worldwide are investigating several wave energy ideas today. Accordingly, this thesis studies the numerical simulation of the dynamic response of the wave energy converters (WECs) subjected to the ocean waves. This study considers a two-body point absorber (2BPA) and an oscillating surge wave energy converter (OSWEC). The first aim is to mesh the bodies of the earlier mentioned WECs to calculate their hydrostatic properties using axiMesh.m and Mesh.m functions provided by NEMOH. The second aim is to calculate the first-order hydrodynamic coefficients of the WECs using the NEMOH BEM solver and to study the ability of this method to eliminate irregular frequencies. The third is to generate a *.h5 file for 2BPA and OSWEC devices, in which all the hydrodynamic data are included. The BEMIO, a pre-and post-processing tool developed by WEC-Sim, is used in this study to create *.h5 files. The primary and final goal is to run the wave energy converter Simulator (WEC-Sim) to simulate the dynamic responses of WECs studied in this thesis and estimate their power performance at different sites located in the Mediterranean Sea and the North Sea. The hydrodynamic data obtained by the NEMOH BEM solver for the 2BPA and OSWEC devices studied in this thesis is imported to WEC-Sim using BEMIO. Lastly, the power matrices and annual energy production (AEP) of WECs are estimated for different sites located in the Sea of Sicily, Sea of Sardinia, Adriatic Sea, Tyrrhenian Sea, and the North Sea. To this end, the NEMOH and WEC-Sim are still the most practical tools to estimate the power generation of WECs numerically.
Resumo:
Gravitational lensing is a powerful tool to investigate the properties of the distribution of matter, be it barionic or dark. In this work we take advantage of Strong Gravitational Lensing to infer the properties of one of the galaxy-scale substructures that makes up the cluster MACSJ1206. It is relatively easy to model the morphology of the visible components of a galaxy, while the morphology of the dark matter distribution cannot be so easily constrained. Being sensitive to the whole mass, strong lensing provides a way to probe DM distribution, and this is the reason why it is the best tool to study the substructure. The goal of this work consists of performing an analysis of the substructure previously mentioned, an early type galaxy (ETG), by analyzing the highly magnified Einstein ring around it, in order to put stringent constraints on its matter distribution, that, for an ETG, is commonly well described by an isothermal profilele. This turns out to be interesting for three main different reasons. It is well known that galaxies in clusters are subject to interaction processes, both dynamic and hydrodynamic, that can significantly modify the distribution of matter within them. Therefore, finding a different profile from the one usually expected could be a sign that the galaxy has undergone processes that have changed its structure. Studying the mass distribution also means studying the dark matter component, which not only still presents great questions today, but which is also not obviously distributed in the same way as in an isolated galaxy. What emerges from the analysis is that the total mass distribution of the galaxy under examination turns out to have a slope much steeper than the isothermal usually expected.