939 resultados para hurricane wind
Resumo:
In distribution system operations, dispatchers at control center closely monitor system operating limits to ensure system reliability and adequacy. This reliability is partly due to the provision of remote controllable tie and sectionalizing switches. While the stochastic nature of wind generation can impact the level of wind energy penetration in the network, an estimate of the output from wind on hourly basis can be extremely useful. Under any operating conditions, the switching actions require human intervention and can be an extremely stressful task. Currently, handling a set of switching combinations with the uncertainty of distributed wind generation as part of the decision variables has been nonexistent. This thesis proposes a three-fold online management framework: (1) prediction of wind speed, (2) estimation of wind generation capacity, and (3) enumeration of feasible switching combinations. The proposed methodology is evaluated on 29-node test system with 8 remote controllable switches and two wind farms of 18MW and 9MW nameplate capacities respectively for generating the sequence of system reconfiguration states during normal and emergency conditions.
Resumo:
A major deficiency in disaster management plans is the assumption that pre-disaster civil-society does not have the capacity to respond effectively during crises. Following from this assumption a dominant emergency management strategy is to replace weak civil-society organizations with specialized disaster organizations that are often either military or Para-military and seek to centralize decision-making. Many criticisms have been made of this approach, but few specifically addresses disasters in the developing world. Disasters in the developing world present unique problems not seen in the developed world because they often occur in the context of compromised governments, and marginalized populations. In this context it is often community members themselves who possess the greatest capacity to respond to disasters. This paper focuses on the capacity of community groups to respond to disaster in a small town in rural Guatemala. Key informant interviews and ethnographic observations are used to reconstruct the community response to the disaster instigated by Hurricane Stan (2005) in the municipality of Tectitán in the Huehuetenango department. The interviews were analyzed using techniques adapted from grounded theory to construct a narrative of the events, and identify themes in the community’s disaster behavior. These themes are used to critique the emergency management plans advocated by the Guatemalan National Coordination for the Reduction of Disasters (CONRED). This paper argues that CONRED uncritically adopts emergency management strategies that do not account for the local realities in communities throughout Guatemala. The response in Tectitán was characterized by the formation of new organizations, whose actions and leadership structure were derived from “normal” or routine life. It was found that pre-existing social networks were resilient and easily re-oriented meet the novel needs of a crisis. New or emergent groups that formed during the disaster utilized social capital accrued by routine collective behavior, and employed organizational strategies derived from “normal” community relations. Based on the effectiveness of this response CONRED could improve its emergency planning on the local-level by utilizing the pre-existing community organizations rather than insisting that new disaster-specific organizations be formed.
Resumo:
Reducing the uncertainties related to blade dynamics by the improvement of the quality of numerical simulations of the fluid structure interaction process is a key for a breakthrough in wind-turbine technology. A fundamental step in that direction is the implementation of aeroelastic models capable of capturing the complex features of innovative prototype blades, so they can be tested at realistic full-scale conditions with a reasonable computational cost. We make use of a code based on a combination of two advanced numerical models implemented in a parallel HPC supercomputer platform: First, a model of the structural response of heterogeneous composite blades, based on a variation of the dimensional reduction technique proposed by Hodges and Yu. This technique has the capacity of reducing the geometrical complexity of the blade section into a stiffness matrix for an equivalent beam. The reduced 1-D strain energy is equivalent to the actual 3-D strain energy in an asymptotic sense, allowing accurate modeling of the blade structure as a 1-D finite-element problem. This substantially reduces the computational effort required to model the structural dynamics at each time step. Second, a novel aerodynamic model based on an advanced implementation of the BEM(Blade ElementMomentum) Theory; where all velocities and forces are re-projected through orthogonal matrices into the instantaneous deformed configuration to fully include the effects of large displacements and rotation of the airfoil sections into the computation of aerodynamic forces. This allows the aerodynamic model to take into account the effects of the complex flexo-torsional deformation that can be captured by the more sophisticated structural model mentioned above. In this thesis we have successfully developed a powerful computational tool for the aeroelastic analysis of wind-turbine blades. Due to the particular features mentioned above in terms of a full representation of the combined modes of deformation of the blade as a complex structural part and their effects on the aerodynamic loads, it constitutes a substantial advancement ahead the state-of-the-art aeroelastic models currently available, like the FAST-Aerodyn suite. In this thesis, we also include the results of several experiments on the NREL-5MW blade, which is widely accepted today as a benchmark blade, together with some modifications intended to explore the capacities of the new code in terms of capturing features on blade-dynamic behavior, which are normally overlooked by the existing aeroelastic models.
Resumo:
Wind power based generation has been rapidly growing world-wide during the recent past. In order to transmit large amounts of wind power over long distances, system planners may often add series compensation to existing transmission lines owing to several benefits such as improved steady-state power transfer limit, improved transient stability, and efficient utilization of transmission infrastructure. Application of series capacitors has posed resonant interaction concerns such as through subsynchronous resonance (SSR) with conventional turbine-generators. Wind turbine-generators may also be susceptible to such resonant interactions. However, not much information is available in literature and even engineering standards are yet to address these issues. The motivation problem for this research is based on an actual system switching event that resulted in undamped oscillations in a 345-kV series-compensated, typical ring-bus power system configuration. Based on time-domain ATP (Alternative Transients Program) modeling, simulations and analysis of system event records, the occurrence of subsynchronous interactions within the existing 345-kV series-compensated power system has been investigated. Effects of various small-signal and large-signal power system disturbances with both identical and non-identical wind turbine parameters (such as with a statistical-spread) has been evaluated. Effect of parameter variations on subsynchronous oscillations has been quantified using 3D-DFT plots and the oscillations have been identified as due to electrical self-excitation effects, rather than torsional interaction. Further, the generator no-load reactance and the rotor-side converter inner-loop controller gains have been identified as bearing maximum sensitivity to either damping or exacerbating the self-excited oscillations. A higher-order spectral analysis method based on modified Prony estimation has been successfully applied to the field records identifying dominant 9.79 Hz subsynchronous oscillations. Recommendations have been made for exploring countermeasures.
Resumo:
The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.