937 resultados para high volume peritoneal dialysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1(st) and 2(nd) ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO(2) and periodic breathing cycles significantly increased with acclimatization (p-value < 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO(2), through a significant negative correlation (p-value < 0.01). Higher Pm is observed at climbing periods visually labeled as PB with > 5 periodic breathing cycles through a significant positive correlation (p-value < 0.01). Our data demonstrate that quantification of the respiratory volume signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemodynamic effects related to changes in serum ionized calcium (iCa) are difficult to determine during conventional hemodialysis (HD) using a fixed dialysate concentration of calcium. Regional citrate anticoagulation (RCA) allows the study of the effects of predefined iCa changes on arterial stiffness and blood pressure (BP) during a single dialysis session. In a crossover study, 15 patients with end-stage renal disease underwent two HD sessions with RCA. Each session was divided into two study phases in which iCa was titrated either to 0.8-1.0 mm or to 1.1-1.4 mm. The sequence of phases was randomly chosen and alternated for the second session. After reaching a stable iCa level, pulse wave velocity (PWV), arterial BP, and heart rate were measured. iCa levels were modified during sequence 1 (iCa low-high) from a predialysis baseline value of 1.15 ± 0.09 mm, first to 0.92 ± 0.05 mm (time point 1; P < 0.001 vs. baseline) and then to 1.18 ± 0.05 (time point 2; ns). During sequence 2 (iCa high-low), iCa levels were modified from 1.15 ± 0.12 mm first to 1.20 ± 0.05 mm (time point 1; ns vs. baseline) and then to 0.93 ± 0.03 (time point 2; P < 0.001). Assuming a basic linear repeated measures model, PWV was positively related to iCa levels (P < 0.03) independent of systolic or diastolic BP, heart rate, or ultrafiltration rate. PWV is closely related to acute changes in serum iCa levels in HD patients using RCA. RCA provides an interesting opportunity to study the effects of acute iCa changes during one dialysis procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: One main problem occurring after bone grafting is resorption, leading to insufficient bone volume and quality, and may subsequently cause dental implant failure. Comparison of graft volume and bone density of iliac crest and calvarial transplants determined by animal studies demonstrates significantly lower resorption of bone grafts harvested from the skull. This paper is the first clinical study evaluating bone volume and density changes of calvarial split bone grafts after alveolar ridge reconstruction. MATERIAL AND METHODS: Bone volume and density were determined using CT scans and the software program Dicom Works in a total of 51 calvarial grafts after alveolar ridge augmentation in 15 patients. CT scans were taken in all 15 patients immediately after grafting (T0) and before implantation after a postoperative period of 6 months (T1). In five patients (26 calvarial grafts), a 1-year follow-up was performed (T2). RESULTS: A mean volume reduction of 16.2% at T1 (15 patients) and 19.2% at T2 (five patients) was observed. Bone density was high--about 1000 Hounsfield units--and did not change during the 1-year period. At the time of implantation, 41 transplants were classified as quality 1 bone and 10 as quality 2-3 bone. Grafting area and the technique used for grafting (inlay or onlay graft) did not affect the postoperative bone volume reduction. Generalized osteoporosis did not increase the resorption rate of calvarial transplants. CONCLUSION: Based on these findings, calvarial split bone grafts are a promising alternative for alveolar ridge reconstruction in dental implantology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ca(2+)-binding proteins parvalbumin (PV) and calbindin D-28k (CB) are key players in the intracellular Ca(2+)-buffering in specific cells including neurons and have profound effects on spatiotemporal aspects of Ca(2+) transients. The previously observed increase in mitochondrial volume density in fast-twitch muscle of PV-/- mice is viewed as a specific compensation mechanism to maintain Ca(2+) homeostasis. Since cerebellar Purkinje cells (PC) are characterized by high expression levels of the Ca(2+) buffers PV and CB, the question was raised, whether homeostatic mechanisms are induced in PC lacking these buffers. Mitochondrial volume density, i.e. relative mitochondrial mass was increased by 40% in the soma of PV-/- PC. Upregulation of mitochondrial volume density was not homogenous throughout the soma, but was selectively restricted to a peripheral region of 1.5 microm width underneath the plasma membrane. Accompanied was a decreased surface of subplasmalemmal smooth endoplasmic reticulum (sPL-sER) in a shell of 0.5 microm thickness underneath the plasma membrane. These alterations were specific for the absence of the "slow-onset" buffer PV, since in CB-/- mice neither changes in peripheral mitochondria nor in sPL-sER were observed. This implicates that the morphological alterations are aimed to specifically substitute the function of the slow buffer PV. We propose a novel concept that homeostatic mechanisms of components involved in Ca(2+) homeostasis do not always occur at the level of similar or closely related molecules. Rather the cell attempts to restore spatiotemporal aspects of Ca(2+) signals prevailing in the undisturbed (wildtype) situation by subtly fine tuning existing components involved in the regulation of Ca(2+) fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: The objective was to study the effects of a novel lung volume optimization procedure (LVOP) using high-frequency oscillatory ventilation (HFOV) upon gas exchange, the transpulmonary pressure (TPP), and hemodynamics in a porcine model of surfactant depletion. METHODS: With institutional review board approval, the hemodynamics, blood gas analysis, TPP, and pulmonary shunt fraction were obtained in six anesthetized pigs before and after saline lung lavage. Measurements were acquired during pressure-controlled ventilation (PCV) prior to and after lung damage, and during a LVOP with HFOV. The LVOP comprised a recruitment maneuver with a continuous distending pressure (CDP) of 45 mbar for 2.5 minutes, and a stepwise decrease of the CDP (5 mbar every 5 minute) from 45 to 20 mbar. The TPP level was identified during the decrease in CDP, which assured a change of the PaO2/FIO2 ratio < 25% compared with maximum lung recruitment at CDP of 45 mbar (CDP45). Data are presented as the median (25th-75th percentile); differences between measurements are determined by Friedman repeated-measures analysis on ranks and multiple comparisons (Tukey's test). The level of significance was set at P < 0.05. RESULTS: The PaO2/FiO2 ratio increased from 99.1 (56.2-128) Torr at PCV post-lavage to 621 (619.4-660.3) Torr at CDP45 (CDP45) (P < 0.031). The pulmonary shunt fraction decreased from 51.8% (49-55%) at PCV post-lavage to 1.03% (0.4-3%) at CDP45 (P < 0.05). The cardiac output and stroke volume decreased at CDP45 (P < 0.05) compared with PCV, whereas the heart rate, mean arterial pressure, and intrathoracic blood volume remained unchanged. A TPP of 25.5 (17-32) mbar was required to preserve a difference in PaO2/FIO2 ratio < 25% related to CDP45; this TPP was achieved at a CDP of 35 (25-40) mbar. CONCLUSION: This HFOV protocol is easy to perform, and allows a fast determination of an adequate TPP level that preserves oxygenation. Systemic hemodynamics, as a measure of safety, showed no relevant deterioration throughout the procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: The objective was to study the effects of a lung recruitment procedure by stepwise increases of mean airway pressure upon organ blood flow and hemodynamics during high-frequency oscillatory ventilation (HFOV) versus pressure-controlled ventilation (PCV) in experimental lung injury. METHODS: Lung damage was induced by repeated lung lavages in seven anesthetized pigs (23-26 kg). In randomized order, HFOV and PCV were performed with a fixed sequence of mean airway pressure increases (20, 25, and 30 mbar every 30 minutes). The transpulmonary pressure, systemic hemodynamics, intracranial pressure, cerebral perfusion pressure, organ blood flow (fluorescent microspheres), arterial and mixed venous blood gases, and calculated pulmonary shunt were determined at each mean airway pressure setting. RESULTS: The transpulmonary pressure increased during lung recruitment (HFOV, from 15 +/- 3 mbar to 22 +/- 2 mbar, P < 0.05; PCV, from 15 +/- 3 mbar to 23 +/- 2 mbar, P < 0.05), and high airway pressures resulted in elevated left ventricular end-diastolic pressure (HFOV, from 3 +/- 1 mmHg to 6 +/- 3 mmHg, P < 0.05; PCV, from 2 +/- 1 mmHg to 7 +/- 3 mmHg, P < 0.05), pulmonary artery occlusion pressure (HFOV, from 12 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 13 +/- 2 mmHg to 15 +/- 2 mmHg, P < 0.05), and intracranial pressure (HFOV, from 14 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 15 +/- 3 mmHg to 17 +/- 2 mmHg, P < 0.05). Simultaneously, the mean arterial pressure (HFOV, from 89 +/- 7 mmHg to 79 +/- 9 mmHg, P < 0.05; PCV, from 91 +/- 8 mmHg to 81 +/- 8 mmHg, P < 0.05), cardiac output (HFOV, from 3.9 +/- 0.4 l/minute to 3.5 +/- 0.3 l/minute, P < 0.05; PCV, from 3.8 +/- 0.6 l/minute to 3.4 +/- 0.3 l/minute, P < 0.05), and stroke volume (HFOV, from 32 +/- 7 ml to 28 +/- 5 ml, P < 0.05; PCV, from 31 +/- 2 ml to 26 +/- 4 ml, P < 0.05) decreased. Blood flows to the heart, brain, kidneys and jejunum were maintained. Oxygenation improved and the pulmonary shunt fraction decreased below 10% (HFOV, P < 0.05; PCV, P < 0.05). We detected no differences between HFOV and PCV at comparable transpulmonary pressures. CONCLUSION: A typical recruitment procedure at the initiation of HFOV improved oxygenation but also decreased systemic hemodynamics at high transpulmonary pressures when no changes of vasoactive drugs and fluid management were performed. Blood flow to the organs was not affected during lung recruitment. These effects were independent of the ventilator mode applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Analyses of permanent brachytherapy seed implants of the prostate have demonstrated that the use of a preplan may lead to a considerable decrease of dosimetric implant quality. The authors aimed to determine whether the same drawbacks of preplanning also apply to high-dose-rate (HDR) brachytherapy. PATIENTS AND METHODS: 15 patients who underwent two separate HDR brachytherapy implants in addition to external-beam radiation therapy for advanced prostate cancer were analyzed. A pretherapeutic transrectal ultrasound was performed in all patients to generate a preplan for the first brachytherapy implant. For the second brachytherapy, a subset of patients were treated by preplans based on the ultrasound from the first brachytherapy implant. Preplans were compared with the respective postplans assessing the following parameters: coverage index, minimum target dose, homogeneity index, and dose exposure of organs at risk. The prostate geometries (volume, width, height, length) were compared as well. RESULTS: At the first brachytherapy, the matching between the preplan and actual implant geometry was sufficient in 47% of the patients, and the preplan could be applied. The dosimetric implant quality decreased considerably: the mean coverage differed by -0.11, the mean minimum target dose by -0.15, the mean homogeneity index by -0.09. The exposure of organs at risk was not substantially altered. At the second brachytherapy, all patients could be treated by the preplan; the differences between the implant quality parameters were less pronounced. The changes of prostate geometry between preplans and postplans were considerable, the differences in volume ranging from -8.0 to 13.8 cm(3) and in dimensions (width, height, length) from -1.1 to 1.0 cm. CONCLUSION: Preplanning in HDR brachytherapy of the prostate is associated with a substantial decrease of dosimetric implant quality, when the preplan is based on a pretherapeutic ultrasound. The implant quality is less impaired in subsequent implants of fractionated brachytherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard toxicity tests with high levels of D-tagatose showed a reversible enlargement of the liver in Sprague-Dawley rats without increase of liver enzymes. The present study tests the hypotheses that partial substitution of dietary sucrose by D-tagatose for 28 days increases the volume of human liver and the concentration of liver glycogen. Twelve healthy, male volunteers were studied in a double-blind crossover study with ingestion of D-tagatose (3x15 g daily) and placebo (sucrose, 3x15 g daily) for periods of 28 days each. Liver volume and glycogen concentration have been determined by magnetic resonance (MR) imaging and spectroscopy, which were accompanied by routine medical examinations. MR examinations before and after the treatments revealed no effects (P>0.05) of treatment, period, or subject for changes in liver volume or glycogen concentration. A steady increase of liver volumes, independent of the D-tagatose or placebo intake, has been observed over the study in parallel with a slight increase in body weight. The treatment with D-tagatose was not associated with clinically relevant changes of the examined clinico-chemical and hematological parameters, including liver enzymes and uric acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel computer-assisted injection device for the delivery of highly viscous bone cements in vertebroplasty is presented. It addresses the shortcomings of manual injection systems ranging from low-pressure and poor level of control to device failure. The presented instrument is capable of generating a maximum pressure of 5000 kPa in traditional 6-ml syringes and provides an advanced control interface for precise cement delivery from outside radiation fields emitted by intraoperative imaging systems. The integrated real-time monitoring of injection parameters, such as flow-rate, volume, pressure, and viscosity, simplifies consistent documentation of interventions and establishes a basis for the identification of safe injection protocols on the longer term. Control algorithms prevent device failure due to overloading and provide means to immediately stop cement flow to avoid leakage into adjacent tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD) have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. METHODOLOGY/PRINCIPAL FINDINGS: We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC) and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg) than preterm infants without BPD (23.4 mL/kg) and term-born infants (22.6 mL/kg), though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF)/t(E)) than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. CONCLUSIONS: Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As transportation infrastructure across the globe approaches the end of its service life, new innovative materials and applications are needed to sustainably repair and prevent damage to these structures. Bridge structures in the United States in particular are at risk as a large percentage will be reaching their design service lives in the coming decades. Superstructure deterioration occurs due to a variety of factors, but a major contributor comes in the form of deteriorating concrete bridge decks. Within a concrete bridge deck system, deterioration mechanisms can include spalling, delaminations, scaling from unsuitable material selection, freeze-thaw damage, and corrosion of reinforcing steel due to infiltration of chloride ions and moisture. This thesis presents findings pertaining to the feasibility of using UHPC as a thin-bonded overlay on concrete bridge decks, specifically in precast bridge deck applications where construction duration and traffic interruption can be minimized, as well as in cast-in-place field applications. UHPC has several properties that make it a desirable material for this application. These properties include post-cracking tensile capacity, high compressive strength, high resistance to environmental and chemical attack, negligible permeability, negligible dry shrinkage when thermally cured, and the ability to self consolidate. The compatibility of this bridge deck overlay system was determined to minimize overlay thickness and dead load without sacrificing bond integrity or lose of protective capabilities. A parametric analysis was conducted using a 3D finite element model of a simply supported bridge under HS-20 truck and overload. Experimental tests were conducted to determine the net effect of UHPC volume change due to restrained shrinkage and tensile creep relaxation. The combined effects from numerical models and test results were then considered in determining the optimum overlay thickness for cast-in-place and precast applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: To determine the incidence of optic disc swelling as a possible indicator of cerebral edema in a large group of healthy mountaineers exposed to very high altitudes and to correlate these findings with various clinical and environmental factors and occurrence of acute mountain sickness and high-altitude cerebral edema. METHODS: This multidisciplinary, prospective, observational cohort study was performed in 2005 within the scope of a medical research expedition to Muztagh Ata (7546 m [24,751 ft]) in Western Xinjiang Province, China. Twenty-seven healthy mountaineers aged 26 to 62 years participated. Medical examinations were performed in Switzerland 1 month before and 4 1/2 months after the expedition. Ophthalmologic examinations were performed at 4 high camps (maximum elevation, 6865 m [22,517 ft]). Optic disc status was documented using digital photography. Further assessments included arterial oxygen saturation and cerebral acute mountain sickness scores. RESULTS: Sixteen of 27 study subjects (59%) exhibited optic disc swelling during their stay at high altitudes, with complete regression on return to lowlands. Significant correlation was noted between optic disc swelling and lower arterial oxygen saturation (odds ratio, 0.86 per percentage of arterial oxygen saturation; 95% confidence interval, 0.81-0.92; P < .001), younger age (odds ratio, 0.95 per year; 95% confidence interval, 0.90-0.99; P = .03), and higher cerebral acute mountain sickness scores (odds ratio, 2.32 per 0.1 point; 95% confidence interval, 1.48-3.63; P < .001). CONCLUSION: Optic disc swelling occurs frequently in high-altitude climbers and is correlated with peripheral oxygen saturation and symptoms of acute mountain sickness. It is most likely the result of hypoxia-induced brain volume increase.