948 resultados para high copper amalgam
Resumo:
The self-modulation process of a high-frequency surface wave (SW) in a wave-guiding structure - a semibounded magnetoactive plasma and perfectly conducting metal wall - is considered for the weak nonlinearity approximation. Estimates are given for the contributions to the nonlinear frequency shift of the SW from the two principal self-action channels: via the generation of a signal of the doubled frequency and of static surface perturbations, arising as the result of the action of a ponderomotive force. Solutions for the field envelope of the nonlinear wave are examined with regard to their stability with respect to longitudinal and transverse perturbations.
Resumo:
High-density inductively coupled plasma (ICP)-assisted self-assembly of the ordered arrays of various carbon nanostructures (NS) for the electron field emission applications is reported. Carbon-based nano-particles, nanotips, and pyramid-like structures, with the controllable shape, ordering, and areal density are grown under remarkably low process temperatures (260-350 °C) and pressures (below 0.1 Torr), on the same Ni-based catalyst layers, in a DC bias-controlled floating temperature regime. A high degree of positional and directional ordering, elevated sp2 content, and a well-structured graphitic morphology are achieved without the use of pre-patterned or externally heated substrates.
Resumo:
The oxides of copper (CuxO) are fascinating materials due to their remarkable optical, electrical, thermal and magnetic properties. Nanostructuring of CuxO can further enhance the performance of this important functional material and provide it with unique properties that do not exist in its bulk form. Three distinctly different phases of CuxO, mainly CuO, Cu2O and Cu4O3, can be prepared by numerous synthesis techniques including, vapour deposition and liquid phase chemical methods. In this article, we present a review of nanostructured CuxO focusing on their material properties, methods of synthesis and an overview of various applications that have been associated with nanostructured CuxO.
Resumo:
Manipulation of a single nanoparticle in the near-substrate areas of high-density plasmas of low-temperature glow discharges is studied. It is shown that the nanoparticles can be efficiently manipulated by the thermophoretic force controlled by external heating of the substrate stage. Particle deposition onto or repulsion from nanostructured carbon surfaces critically depends on the values of the neutral gas temperature gradient in the near-substrate areas, which is directly measured in situ in different heating regimes by originally developed temperature gradient probe. The measured values of the near-surface temperature gradient are used in the numerical model of nanoparticle dynamics in a variable-length presheath. Specific conditions enabling the nanoparticle to overcome the repulsive potential and deposit on the substrate during the discharge operation are investigated. The results are relevant to fabrication of various nanostructured films employing structural incorporation of the plasma-grown nanoparticles, in particular, to nanoparticle deposition in the plasma-enhanced chemical-vapor deposition of carbon nanostructures in hydrocarbon-based plasmas.
Resumo:
Operation regimes, plasma parameters, and applications of the low-frequency (∼500 kHz) inductively coupled plasma (ICP) sources with a planar external coil are investigated. It is shown that highly uniform, high-density (ne∼9×1012 cm-3) plasmas can be produced in low-pressure argon discharges with moderate rf powers. The low-frequency ICP sources operate in either electrostatic (E) or electromagnetic (H) regimes in a wide pressure range without any Faraday shield or an external multipolar magnetic confinement, and exhibit high power transfer efficiency, and low circuit loss. In the H mode, the ICP features high level of uniformity over large processing areas and volumes, low electron temperatures, and plasma potentials. The low-density, highly uniform over the cross-section, plasmas with high electron temperatures and plasma and sheath potentials are characteristic to the electrostatic regime. Both operation regimes offer great potential for various plasma processing applications. As examples, the efficiency of the low-frequency ICP for steel nitriding and plasma-enhanced chemical vapor deposition of hydrogenated diamond-like carbon (DLC) films, is demonstrated. It appears possible to achieve very high nitriding rates and dramatically increase micro-hardness and wear resistance of the AISI 304 stainless steel. It is also shown that the deposition rates and mechanical properties of the DLC films can be efficiently controlled by selecting the discharge operating regime.
Resumo:
High-frequency electrostatic surface waves at the interface of a dusty plasma and a dielectric wall are investigated. The effects of ionization, recombination, and dust-charge variation are taken into account in a self-consistent manner, so that the system considered is closed. It is shown that a coupling of the surface waves and the dust-charge relaxation mode leads to anomalous damping and frequency downshift of the waves.
Resumo:
The nonlinear effect of hf surface waves self-interaction in a magnetoactive planar plasma waveguide is studies. The waveguide structure under consideration can be formed by gaseous or semiconducting homogeneous plasma, which is limited by a perfectly conducting metal surface. The surface (localized near the surface) wave perturbations propagating on the plasma-metal boundary perpendicular to the constant external magnetic field, are investigated. The nonlinear frequency shift connected with interaction of the second harmonic and static surface perturbations with the main frequency wave, is determined using the approximation of weak nonlinearity. It is shown that the process of double-frequency signal generation is the dissipative one as a result of bulk wave excitation on the surface wave second harmonic.
Resumo:
In approximation of weak heating influence of electron heating in the high-frequency surface wave field on propagation of surface wave (heating nonlinearity) is considered. It is shown that high-frequency surface wave propagates in direction perpendicular to the external magnetic field at the semiconductor-metal interface. A nonlinear dispersion equation is obtained and studied that allows to make conclusions about the contribution of heating nonlinearity to nonlinear process of considered interaction.
Resumo:
The problem concerning the excitation of high-frequency surface waves (SW) propagating across an external magnetic field at a plasma-metal interface is considered. A homogeneous electric pump field is applied in the direction transverse with respect to the plasma-metal interface. Two high-frequency SW from different frequency ranges of existence and propagating in different directions are shown to be excited in this pump field. The instability threshold pump-field values and increments are obtained for different parameters of the considered waveguide structure. The results associated with saturation of the nonlinear instability due to self-interaction effects of the excited SW are given as well. The results are appropriate for both gaseous and semiconductor plasmas.
Resumo:
Inductive fault current limiters (FCLs) have several advantages, such as significant current limitation, immediate triggering and relatively low losses. Despite these advantages, saturated core FCLs have not been commercialized due to its large size and associated high costs. A major remaining challenge is to reduce the footprint of the device. In this paper, a solution to reduce the overall footprint is proposed and discussed. In arrangements of windings on a core in reactors such as FCLs, the core is conventionally grounded. The electrical insulation distance between high voltage winding and core can be reduced if the core is left at floating potential. This paper shows the results of the investigation carried out on the insulation of such a coil-core assembly. Two experiments were conducted. In the first, the behavior of the apparatus under high voltage conditions was assessed by performing power frequency and lightning impulse tests. In the second experiment, a low voltage test was conducted during which voltages of different frequencies and pulses with varying rise times were applied. A finite element simulation was also carried out for comparison and further investigation
Resumo:
This paper presents a 100 Hz monocular position based visual servoing system to control a quadrotor flying in close proximity to vertical structures approximating a narrow, locally linear shape. Assuming the object boundaries are represented by parallel vertical lines in the image, detection and tracking is achieved using Plücker line representation and a line tracker. The visual information is fused with IMU data in an EKF framework to provide fast and accurate state estimation. A nested control design provides position and velocity control with respect to the object. Our approach is aimed at high performance on-board control for applications allowing only small error margins and without a motion capture system, as required for real world infrastructure inspection. Simulated and ground-truthed experimental results are presented.
Resumo:
The preventive maintenance of traction equipment for Very High Speed Trains (VHST) nowadays is becoming very expensive owing to the high complexity and quality of these components that require high reliability. An efficient maintenance approach like the Condition-Based Maintenance (CBM) should be implemented to reduce the costs. For this purpose, an experimental full-scale test rig for the CBM of VHST traction equipment has been designed to investigate in detail failures in the main mechanical components of system, i.e. motor, bearings and gearbox. The paper describes the main characteristics of this unique test rig, able to reproduce accurately the train operating conditions, including the relative movements of the motor, the gearbox and the wheel axle. Gearbox, bearing seats and motor are equipped by accelerometers, thermocouples, torque meter and other sensors in different positions. The testing results give important information about the most suitable sensor position and type to be installed for each component and show the effectiveness of the techniques used for the signal analysis in order to identify faults of the gearbox and motor bearings.
Resumo:
Monitoring of the integrity of rolling element bearings in the traction system of high speed trains is a fundamental operation in order to avoid catastrophic failures and to implement effective condition-based maintenance strategies. Diagnostics of rolling element bearings is usually based on vibration signal analysis by means of suitable signal processing techniques. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in industrial applications, particularly in the field of rail transport, remains scarcely investigated. This paper will address the diagnostics of bearings taken from the service after a long term operation on a high speed train. These worn bearings have been installed on a test-rig, consisting of a complete full-scale traction system of a high speed train, able to reproduce the effects of wheel-track interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is also proposed.
Resumo:
Rolling element bearings are the most critical components in the traction system of high speed trains. Monitoring their integrity is a fundamental operation in order to avoid catastrophic failures and to implement effective condition based maintenance strategies. Generally, diagnostics of rolling element bearings is usually performed by analyzing vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. Several papers have been published on this subject in the last two decades, mainly devoted to the development and assessment of signal processing techniques for diagnostics. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in specific industrial applications, particularly in rail industry, remains scarcely investigated. This paper is aimed at filling this knowledge gap, by addressing the diagnostics of bearings taken from the service after a long term operation on the traction system of a high speed train. Moreover, in order to test the effectiveness of the diagnostic procedures in the environmental conditions peculiar to the rail application, a specific test-rig has been built, consisting of a complete full-scale train traction system, able to reproduce the effects of wheeltrack interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is proposed, in order to limit their number.
Resumo:
A new small full bridge module for MMCC research is presented. Each full bridge converter cell is a single small (65 × 30 mm) multilayer PCB with two low voltage high current (22 V, 40 A) integrated half bridge ICs and the necessary isolated control signals and auxiliary power supply (2500 V isolation). All devices are surface mount, minimising cell height (4 mm) and parasitic inductance. Each converter cell can be physically stacked with PCB connectors propagating the control signals and inter-cell power connections. Many cells can be trivially stacked to create a large multilevel converter leg with isolated auxiliary power and control signals. Any of the MMCC family members is then easily formed. With a change in placement of stacking connector, a parallel connection of bridges is also possible. Operation of a nine level parallel full bridge is demonstrated at 12 V and 384 kHz switching frequency delivering a 30 W 2 kHz sinewave into a resistive load. A number of new applications for this novel module aside from MMCC development are listed.