996 resultados para heat sinks
Resumo:
The application of an aluminum-based microstructured reactor/heat-exchanger for measuring reaction kinetics in the explosive region is presented. Platinum-catalyzed ammonia oxidation was chosen as a test reaction to demonstrate the feasibility of the method. The reaction kinetics was investigated in a wide range of conditions [NH3 partial pressure: 0.03-0.20 atm, O-2 partial pressure: 0.10-0.88atm; reactant flow 2000-3000 cm(3) min(-1) (STP); temperature 240-360degreesC] over a supported Pt/Al2O3 catalyst (mass of Al2O3 layer in the reactor, 1.95 mg; Pt/Al molar ratio, 0.71; Pt dispersion, 20%). The maximum temperature non-uniformity in the microstructured reactor was ca. 5degreesC, even at conditions corresponding to an adiabatic temperature rise of 1400degreesC. Based on the data obtained, a previous kinetic model for ammonia oxidation was extended. The modified 13-step model describes the data in a considerably wider range of conditions including those with high ammonia loadings and high reaction temperatures. The results indicate the large potential of microstructured devices as reliable tools for kinetic research of highly exothermic reactions.
Resumo:
Metallographic characterisation is combined with statistical analysis to study the microstructure of a BT16 titanium alloy after different heat treatment processes. It was found that the length, width and aspect ratio of α plates in this alloy follow the three-parameter Weibull distribution. Increasing annealing temperature or time causes the probability distribution of the length and the width of α plates to tend toward a normal distribution. The phase transformation temperature of the BT16 titanium alloy was found to be 875±5°C.
Resumo:
Recent research on Variable Stiffness (VS) laminates, which are constructed by steering the fiber orientation as a spatial function of location, have shown to improve laminate performance under mechanical loads. Two distinct cases of stiffness variation can be achieved either by variation of the fiber orientation in the direction of the global x-axis, or perpendicular to it. In the present paper, thermal analysis of a VS laminate is performed to study the effect of steering fibers on transient heat conduction under uniform heat flux using finite element method. The goal of the present paper is a parametric study of the effect of variable stiffness properties on transient response including time to reach steady state and temperature profile. Also, stress resultants and maximum stress location are investigated under different boundary conditions. A FEM algorithm is applied to exactly incorporate the boundary conditions for stress resultant analysis.
Resumo:
Recent research on Variable Stiffness (VS) laminates, which are constructed by steering the fiber orientation as a spatial function of location, have shown to improve laminate performance under mechanical loads. Two distinct cases of stiffness variation can be achieved either by variation of the fiber orientation in the direction of the global x-axis, or perpendicular to it. In the present paper, thermal analysis of VS laminate is performed to study the effect of steering fibers on transient heat conduction under uniform heat flux using finite element method. The goal of the present paper is a parametric study of the
effect of variable stiffness properties on transient response including time to reach steady state and temperature profile. Also, stress resultants and maximum stress location are investigated under different boundary conditions. A FEM algorithm is applied to exactly incorporate the boundary conditions.