949 resultados para heat demand


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ground source heat pump assisted by an array of photovoltaic (PV)-thermal modules was studied in this work. Extracting heat from an array of PV modules should improve the performance of both the PV cells and the heat pump. A series of computer simulations compare the performance of a ground source heat pump with a short ground circuit, used to provide space heating and domestic hot water at a house in southern England. The results indicate that extracting heat from an array of PV-thermal modules would improve the performance of a ground source heat pump with an undersized ground loop. Nevertheless, open air thermal collectors could be more effective, especially during winter. In one model more electricity was saved in ohmic heating than was generated by cooling the PV cells. Cooling the PV modules was found to increase their electrical output up to 4%, but much of the extra electricity was consumed by the cooling pumps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The urban heat island is a well-known phenomenon that impacts a wide variety of city operations. With greater availability of cheap meteorological sensors, it is possible to measure the spatial patterns of urban atmospheric characteristics with greater resolution. To develop robust and resilient networks, recognizing sensors may malfunction, it is important to know when measurement points are providing additional information and also the minimum number of sensors needed to provide spatial information for particular applications. Here we consider the example of temperature data, and the urban heat island, through analysis of a network of sensors in the Tokyo metropolitan area (Extended METROS). The effect of reducing observation points from an existing meteorological measurement network is considered, using random sampling and sampling with clustering. The results indicated the sampling with hierarchical clustering can yield similar temperature patterns with up to a 30% reduction in measurement sites in Tokyo. The methods presented have broader utility in evaluating the robustness and resilience of existing urban temperature networks and in how networks can be enhanced by new mobile and open data sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A millimetre-wave scintillometer was paired with an infrared scintillometer, enabling estimation of large-area evapotranspiration across northern Swindon, a suburban area in the UK. Both sensible and latent heat fluxes can be obtained using this "two-wavelength" technique, as it is able to provide both temperature and humidity structure parameters, offering a major advantage over conventional single-wavelength scintillometry. The first paper of this two-part series presented the measurement theory and structure parameters. In this second paper, heat fluxes are obtained and analysed. These fluxes, estimated using two-wavelength scintillometry over an urban area, are the first of their kind. Source area modelling suggests the scintillometric fluxes are representative of 5–10 km2. For comparison, local-scale (0.05–0.5 km2) fluxes were measured by an eddy covariance station. Similar responses to seasonal changes are evident at the different scales but the energy partitioning varies between source areas. The response to moisture availability is explored using data from 2 consecutive years with contrasting rainfall patterns (2011–2012). This extensive data set offers insight into urban surface-atmosphere interactions and demonstrates the potential for two-wavelength scintillometry to deliver fluxes over mixed land cover, typically representative of an area 1–2 orders of magnitude greater than for eddy covariance measurements. Fluxes at this scale are extremely valuable for hydro-meteorological model evaluation and assessment of satellite data products

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peak residential electricity demand takes place when people conduct simultaneous activities at specific times of the day. Social practices generate patterns of demand and can help understand why, where, with whom and when energy services are used at peak time. The aim of this work is to make use of recent UK time use and locational data to better understand: (i) how a set of component indices on synchronisation, variation, sharing and mobility indicate flexibility to shift demand; and (ii) the links between people’s activities and peaks in greenhouse gases’ intensities. The analysis is based on a recent UK time use dataset, providing 1 minute interval data from GPS devices and 10 minute data from diaries and questionnaires for 175 data days comprising 153 respondents. Findings show how greenhouse gases’ intensities and flexibility to shift activities vary throughout the day. Morning peaks are characterised by high levels of synchronisation, shared activities and occupancy, with low variation of activities. Evening peaks feature low synchronisation, and high spatial mobility variation of activities. From a network operator perspective, the results indicate that periods with lower flexibility may be prone to more significant local network loads due to the synchronization of electricity-demanding activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent urban air temperature increase is attributable to the climate change and heat island effects due to urbanization. This combined effects of urbanization and global warming can penetrate into the underground and elevate the subsurface temperature. In the present study, over-100 years measurements of subsurface temperature at a remote rural site were analysed, and an increasing rate of 0.17⁰C per decade at soil depth of 30cm due to climate change was identified in the UK, but the subsurface warming in an urban site showed a much higher rate of 0.85⁰C per decade at a 30cm depth and 1.18⁰C per decade at 100cm. The subsurface urban heat island (SUHI) intensity obtained at the paired urban-rural stations in London showed an unique 'U-shape', i.e. lowest in summer and highest during winter. The maximum SUHII is 3.5⁰C at 6:00 AM in December, and the minimum UHII is 0.2⁰C at 18:00PM in July. Finally, the effects of SUHI on the energy efficiency of the horizontal ground source heat pump (GSHP) were determined. Provided the same heat pump used, the installation at an urban site will maintain an overall higher COP compared with that at a rural site in all seasons, but the highest COP improvement can be achieved in winter.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to compare the antimicrobial activities of freshly-made, heat-treated (HT), and 14 d stored (+)-Catechin solutions with (+)-catechin flavanol isomers in the presence of copper sulphate. (+)-Catechin activity was investigated when combined with different ratios of Cu2+; 100°C heat treatment; autoclaving; and 14 d storage against Staphylococcus aureus. Cu2+-(+)-Catechin complexation, isomer structure-activity relationships, and H2O2 generation were also investigated. Freshly-made, HT, and 14d stored flavanols showed no activity. Whilst combined Cu2+-autoclaved (+)-Catechin and -HT(+)-Catechin activities were similar, HT(+)-Catechin was more active than either freshly-made (+)-catechin (generating more H2O2) or (-)-Epicatechin (though it generated less H2O2) or 14d-(+)-Catechin (which had similar activity to Cu2+ controls - though it generated more H2O2). When combined with Cu2+, in terms of rates of activity, HT(+)-Catechin was lower than (-)-Epigallocatechin gallate and greater than freshly-made (+)-Catechin. Freshly-made and HT(+)-Catechin formed acidic complexes with Cu2+ as indicated by pH and UV-vis measurements although pH changes did not account for antimicrobial activity. Freshly-made and HT(+)-Catechin both formed Cu2+ complexes. The HT(+)-Catechin complex generated more H2O2 which could explain its higher antimicrobial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of high pressure homogenisation (HPH) and heat treatments on physicochemical properties and physical stability of almond and hazelnut milks was studied. Vegetable milks were obtained and homogenised by applying 62, 103 and 172 MPa (MF1, MF2 and MF3, respectively). Untreated and MF3 samples were also submitted to two different heat treatments (85 °C/30 min (LH) or 121 °C/15 min (HH)). Physical and structural properties of the products were greatly affected by heat treatments and HPH. In almond milk, homogenised samples showed a significant reduction in particle size, which turned from bimodal and polydisperse to monodisperse distributions. Particle surface charge, clarity and Whiteness Index were increased and physical stability of samples was improved, without affecting either viscosity or protein stability. Hazelnut beverages showed similar trends, but HPH notably increased their viscosity while change their rheological behaviour, which suggested changes in protein conformation. HH treatments caused an increment of particle size due to the formation oil droplet-protein body clusters, associated with protein denaturation. Samples submitted to the combined treatment MF3 and LH showed the greatest stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric CO2 concentration is expected to continue rising in the coming decades, but natural or artificial processes may eventually reduce it. We show that, in the FAMOUS atmosphere-ocean general circulation model, the reduction of ocean heat content as radiative forcing decreases is greater than would be expected from a linear model simulation of the response to the applied forcings. We relate this effect to the behavior of the Atlantic meridional overturning circulation (AMOC): the ocean cools more efficiently with a strong AMOC. The AMOC weakens as CO2 rises, then strengthens as CO2 declines, but temporarily overshoots its original strength. This nonlinearity comes mainly from the accumulated advection of salt into the North Atlantic, which gives the system a longer memory. This implies that changes observed in response to different CO2 scenarios or from different initial states, such as from past changes, may not be a reliable basis for making projections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the “thermal” (near-surface air temperature) and “wind” (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the “thermal” forcing, whereas it is more due to the “wind” forcing in the North Pacific; in the Southern Ocean, the “thermal” and “wind” forcing have a comparable influence. In the ocean adjacent to Antarctica the “thermal” forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the “wind” forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the “thermal” and “wind” forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the “thermal” forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind generation's contribution to supporting peak electricity demand is one of the key questions in wind integration studies. Differently from conventional units, the available outputs of different wind farms cannot be approximated as being statistically independent, and hence near-zero wind output is possible across an entire power system. This paper will review the risk model structures currently used to assess wind's capacity value, along with discussion of the resulting data requirements. A central theme is the benefits from performing statistical estimation of the joint distribution for demand and available wind capacity, focusing attention on uncertainties due to limited histories of wind and demand data; examination of Great Britain data from the last 25 years shows that the data requirements are greater than generally thought. A discussion is therefore presented into how analysis of the types of weather system which have historically driven extreme electricity demands can help to deliver robust insights into wind's contribution to supporting demand, even in the face of such data limitations. The role of the form of the probability distribution for available conventional capacity in driving wind capacity credit results is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite based top-of-atmosphere (TOA) and surface radiation budget observations are combined with mass corrected vertically integrated atmospheric energy divergence and tendency from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Hemispheric contrasts in the energy budget terms are used to determine the radiative and combined sensible and latent heat contributions to the cross-equatorial heat transports in the atmosphere (AHT_EQ) and ocean (OHT_EQ). The contrast in net atmospheric radiation implies an AHT_EQ from the northern hemisphere (NH) to the southern hemisphere (SH) (0.75 PW), while the hemispheric difference in sensible and latent heat implies an AHT_EQ in the opposite direction (0.51 PW), resulting in a net NH to SH AHT_EQ (0.24 PW). At the surface, the hemispheric contrast in the radiative component (0.95 PW) dominates, implying a 0.44 PW SH to NH OHT_EQ. Coupled model intercomparison project phase 5 (CMIP5) models with excessive net downward surface radiation and surface-to-atmosphere sensible and latent heat transport in the SH relative to the NH exhibit anomalous northward AHT_EQ and overestimate SH tropical precipitation. The hemispheric bias in net surface radiative flux is due to too much longwave surface radiative cooling in the NH tropics in both clear and all-sky conditions and excessive shortwave surface radiation in the SH subtropics and extratropics due to an underestimation in reflection by clouds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic premise of this article is that typefaces reflect, and respond to, the conditions of making and using documents; and that demand for evolving document genres drives the development of new typefaces. The article describes how the combination of a narrow range for functionally acceptable letters and paragraphs, and a wide range of possibilities to express these arrangements, offers a revealing tool for examining changes in the perceptions of professionals in visual communication. Beyond technical issues, the choices of document makers allow insights into wider trends such as urbanisation, demographic changes, education standards, and wider issues of visual literacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office’s (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. Method The prototype health forecasting alert system introduces an “impact vs likelihood matrix” for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. Conclusions The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.