994 resultados para hardness measurements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used XUV lasers to make absolute measurements of the photoabsorption coefficient of Al at energies just below that of the L3 absorption edge at 72.7 eV. Transmission measurements at photon energies of 53.7 and 63.3 eV have been made using Ne-like Ni and Ge XUV lasers. The XUV laser output was recorded in first and second orders using a flat-field spectrometer. Al foils with steps of various thicknesses were placed over the first order diffracted signal, while the second order diffraction was used to monitor the beam profile at each position. The transmission data agree extremely well with the original measurements at these wavelengths made by Henke and co-workers (Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 18 1), but are in conflict with subsequent measurements which are currently in common use (Gullikson E M, Denham P, Mrowka S and Underwood J H 1994 Phys. Rev. B 49 16 283). The exact values of the absorption coefficients in this region of the spectrum have significant implications for the diagnosis of the energy and intensity output of XUV lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in the XUV mass absorption coefficient of liquid aluminium, produced by high-power-laser shock-compression, is measured using XUV laser radiography. At a photon energy of 63 eV a change in the mass absorption coefficient by up to a factor of similar to2.2 is determined at densities close to twice that of solid and electron temperatures of the order of 1 eV. Comparison with hydrodynamic simulations indicate that the absorption coefficient scales with density as rho (1.3 +/-0.2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that failure of local realism can be revealed to observers for whom only extremely-coarse-grained measurements are available. In our instances, Bell's inequality is violated even up to the maximum limit while both the local measurements and the initial local states under scrutiny approach the classical limit. Furthermore, we can observe failure of local realism when an inequality enforced by nonlocal realistic theories is satisfied. This suggests that locality alone may be violated while realism cannot be excluded for specific observables and states. Small-scale experimental demonstration of our examples may be possible in the foreseeable future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an inertial-sensor-based monitoring system for measuring the movement of human upper limbs. Two wearable inertial sensors are placed near the wrist and elbow joints, respectively. The measurement drift in segment orientation is dramatically reduced after a Kalman filter is applied to estimate inclinations using accelerations and turning rates from gyroscopes. Using premeasured lengths of the upper and lower arms, we compute the position of the wrist and elbow joints via a proposed kinematic model. Experimental results demonstrate that this new motion capture system, in comparison to an optical motion tracker, possesses an RMS position error of less than 0.009 m, with a drift of less than 0.005 ms-1 in five daily activities. In addition, the RMS angle error is less than 3??. This indicates that the proposed approach has performed well in terms of accuracy and reliability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a systematic measurement campaign of diversity reception techniques for use in multiple-antenna wearable systems operating at 868 MHz. The experiments were performed using six time-synchronized bodyworn receivers and considered mobile off-body communications in an anechoic chamber, open office area and a hallway. The cross-correlation coefficient between the signal fading measured by bodyworn receivers was dependent upon the local environment and typically below 0.7. All received signal envelopes were combined in post-processing to study the potential benefits of implementing receiver diversity based upon selection combination, equal-gain and maximal-ratio combining. It is shown that, in an open office area, the 5.7 dB diversity gain obtained using a dual-branch bodyworn maximal-ratio diversity system may be further improved to 11.1 dB if a six-branch system was used. First-and second-order theoretical equations for diversity reception techniques operating in Nakagami fading conditions were used to model the postdetection combined envelopes. Maximum likelihood estimates of the Nakagami-parameter suggest that the fading conditions encountered in this study were generally less severe than Rayleigh. The paper also describes an algorithm that may be used to simulate the measured output of an M-branch diversity combiner operating in independent and identically-distributed Nakagami fading environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling of on-body propagation channels is of paramount importance to those wishing to evaluate radio channel performance for wearable devices in body area networks (BANs). Difficulties in modeling arise due to the highly variable channel conditions related to changes in the user's state and local environment. This study characterizes these influences by using time-series analysis to examine and model signal characteristics for on-body radio channels in user stationary and mobile scenarios in four different locations: anechoic chamber, open office area, hallway, and outdoor environment. Autocorrelation and cross-correlation functions are reported and shown to be dependent on body state and surroundings. Autoregressive (AR) transfer functions are used to perform time-series analysis and develop models for fading in various on-body links. Due to the non-Gaussian nature of the logarithmically transformed observed signal envelope in the majority of mobile user states, a simple method for reproducing the failing based on lognormal and Nakagami statistics is proposed. The validity of the AR models is evaluated using hypothesis testing, which is based on the Ljung-Box statistic, and the estimated distributional parameters of the simulator output compared with those from experimental results.