951 resultados para growth analysis
Resumo:
The recent trend of incorporating more composite material in primary aircraft structures has highlighted the vulnerability of stiffened aerostructures to through-thickness stresses, which may lead to delamination and debonding at the skin-stiffener interface, leading to collapse. Stiffener runout regions are particularly susceptible to this problem and cannot be avoided due to the necessity to terminate stiffeners at rib intersections or at cutouts, interrupting the stiffener load path. In this paper, experimental tests relating to two different stiffener runout specimens are presented and the failure modes of both specimens are discussed in detail. A thinner-skinned specimen showed sudden and unstable crack propagation, while a thicker-skinned specimen showed initially unstable but subsequent stable crack growth. Detailed finite element models of the two specimens are developed, and it is shown how such models can explain and predict the behaviour and failure mode of stiffener runouts. The models contain continuum shell elements to model the skin and stiffener, while cohesive elements using a traction-separation law are placed at the skin-stiffener interface to effectively model the debonding which promotes structural failure.
Resumo:
The termination of stiffeners in composite aircraft structures give rise to regions of high interlaminar shear and peel stresses as the load in the stiffener is diffused into the skin. This is of particular concern in co-cured composite stiffened structures where there is a relatively low resistance to through-thickness stress components at the skin-stiffener interface. In Part I, experimental results of tested specimens highlighted the influence of local design parameters on their structural response. Indeed some of the observed behavior was unexpected. There is a need to be able to analyse a range of changes in geometry rapidly to allow the analysis to form an integral part of the structural design process.
This work presents the development of a finite element methodology for modelling the failure process of these critical regions. An efficient thick shell element formulation is presented and this element is used in conjuction with the Virtual Crack Closure Technique (VCCT) to predict the crack growth characteristics of the modelled specimens. Three specimens were modelled and the qualitative aspects of crack growth were captured successfully. The shortcomings in the quantitative correlation between the predicted and observed failure loads are discussed. There was evidence to suggest that high through-thickness compressive stresses enhanced the fracture toughness in these critical regions.
Resumo:
The distribution of glacial cirques upon the Kamchatka peninsula, Far Eastern Russia, is systematically mapped from satellite images and digital elevation model data. A total of 3,758 cirques are identified, 238 of which are occupied by active glaciers. The morphometry of the remaining 3,520 cirques is analysed. These cirques are found to show a very strong N bias in their azimuth (orientation), likely resulting from aspect-related variations in insolation. The strength of this N bias is considered to indicate that former glaciation upon the peninsula was often ‘marginal’, and mainly of cirque-type, with peaks extending little above regional equilibrium-line altitudes. This is supported by the fact that S and SE-facing cirques are the highest in the dataset, suggesting that glacier-cover was rarely sufficient to allow S and SE-facing glaciers to develop at low altitudes. The strength of these azimuth-related variations in cirque altitude is thought to reflect comparatively cloud-free conditions during former periods of glaciation. It is suggested that these characteristics, of marginal glaciation and comparatively cloud-free conditions, reflect the region’s former aridity, which was likely intensified at the global Last Glacial Maximum, and during earlier periods of ice advance, as a result of the development of negative pressure anomalies over the North Pacific (driven by the growth of the Laurentide Ice Sheet), combined with other factors, including an increase in the extent and duration of sea ice, a reduction in global sea levels, cooler sea surface temperatures, and the localised growth of mountain glaciers. There is published evidence to suggest extensive glaciation of the Kamchatka Peninsula at times during the Late Quaternary, yet the data presented here appears to suggest that such phases were comparatively short-lived, and that smaller cirque-type glaciers were generally more characteristic of the period.
Resumo:
Unregulated growth promoter use in food-producing animals is an issue of concern both from food safety and animal welfare perspectives. However, the monitoring of such practices is analytically challenging due to the concerted actions of users to evade detection. Techniques based on the monitoring of biological responses to exogenous administrations have been proposed as more sensitive methods to identify treated animals. This study has, for the first time, profiled plasma proteome responses in bovine animals to treatment with nortestosterone decanoate and 17 beta-oestradiol benzoate, followed by dexamethasone administration. Two-dimensional fluorescence differential in-gel electrophoresis analysis revealed a series of hepatic and acute-phase proteins within plasma whose levels were up- or down-regulated within phases of the treatment regime. Surface plasmon resonance (SPR) immuno-assays were developed to quantify responses of identified protein markers during the experimental treatment study with a view to developing methods which can be used as screening tools for growth promoter abuse detection. SPR analysis demonstrated the potential for plasma proteins to be used as indicative measures of growth promoter administrations and concludes that the sensitivity and robustness of any detection approach based on plasma proteome analysis would benefit from examination of a range of proteins representative of diverse biological processes rather being reliant on specific individual markers.
Resumo:
This paper investigates adolescent men's pregnancy resolution choices in Australia, Ireland and Italy. It addresses two main gaps in the literature: the lack of research on (adolescent) men's views on unintended pregnancy and pregnancy resolution; and the lack of international comparative case studies on men and reproductive choices. Consistent with theories of the transformation of intimacies in society and the growth of individualization, the results suggest that adolescent men are interested in the effect of an unintended pregnancy on their individual biographies as well as the effect on their girlfriend's health and well-being. However, Australian male adolescents were much more likely to choose abortion than Italian or Irish adolescents, suggesting adolescent males have also internalized country level debates surrounding abortion. Methodologically, the paper demonstrates an innovative approach to data-collection using a computer-based interactive drama to facilitate participants' deliberation and responses. It was shown to engage a large number of adolescent men and is likely to have wider generalisability in developing international comparative research on the topic, as well as applications for health promotion.
Resumo:
Rationale: Histone deacetylase (HDAC)7 is expressed in the early stages of embryonic development and may play a role in endothelial function.
Objective: This study aimed to investigate the role of HDAC7 in endothelial cell (EC) proliferation and growth and the underlying mechanism.
Methods and Results: Overexpression of HDAC7 by adenoviral gene transfer suppressed human umbilical vein endothelial cell (HUVEC) proliferation by preventing nuclear translocation of ß-catenin and downregulation of T-cell factor-1/Id2 (inhibitor of DNA binding 2) and cyclin D1, leading to G1 phase elongation. Further assays with the TOPFLASH reporter and quantitative RT-PCR for other ß-catenin target genes such as Axin2 confirmed that overexpression of HDAC7 decreased ß-catenin activity. Knockdown of HDAC7 by lentiviral short hairpin RNA transfer induced ß-catenin nuclear translocation but downregulated cyclin D1, cyclin E1 and E2F2, causing HUVEC hypertrophy. Immunoprecipitation assay and mass spectrometry analysis revealed that HDAC7 directly binds to ß-catenin and forms a complex with 14-3-3 e, ?, and ? proteins. Vascular endothelial growth factor treatment induced HDAC7 degradation via PLC?-IP3K (phospholipase C?–inositol-1,4,5-trisphosphate kinase) signal pathway and partially rescued HDAC7-mediated suppression of proliferation. Moreover, vascular endothelial growth factor stimulation suppressed the binding of HDAC7 with ß-catenin, disrupting the complex and releasing ß-catenin to translocate into the nucleus.
Conclusions: These findings demonstrate that HDAC7 interacts with ß-catenin keeping ECs in a low proliferation stage and provides a novel insight into the mechanism of HDAC7-mediated signal pathways leading to endothelial growth
Resumo:
We have previously demonstrated that histone deacetylase 7 (HDAC7) expression and splicing play an important role in smooth muscle cell (SMC) differentiation from embryonic stem (ES) cells, but the molecular mechanisms of increased HDAC7 expression during SMC differentiation are currently unknown. In this study, we found that platelet-derived growth factor-BB (PDGF-BB) induced a 3-fold increase in the transcripts of HDAC7 in differentiating ES cells. Importantly, our data also revealed that PDGF-BB regulated HDAC7 expression not through phosphorylation of HDAC7 but through transcriptional activation. By dissecting its promoters with progressive deletion analysis, we identified the sequence between -343 and -292 bp in the 5'-flanking region of the Hdac7 gene promoter as the minimal PDGF-BB-responsive element, which contains one binding site for the transcription factor, specificity protein 1 (Sp1). Mutation of the Sp1 site within this PDGF-BB-responsive element abolished PDGF-BB-induced HDAC7 activity. PDGF-BB treatment enhanced Sp1 binding to the Hdac7 promoter in differentiated SMCs in vivo as demonstrated by the chromatin immunoprecipitation assay. Moreover, we also demonstrated that knockdown of Sp1 abrogated PDGF-BB-induced HDAC7 up-regulation and SMC differentiation gene expression in differentiating ES cells, although enforced expression of Sp1 alone was sufficient to increase the activity of the Hdac7 promoter and expression levels of SMC differentiation genes. Importantly, we further demonstrated that HDAC7 was required for Sp1-induced SMC differentiation of gene expression. Our data suggest that Sp1 plays an important role in the regulation of Hdac7 gene expression in SMC differentiation from ES cells. These findings provide novel molecular insights into the regulation of HDAC7 and enhance our knowledge in SMC differentiation and vessel formation during embryonic development.
Resumo:
The cytogenetically normal subtype of acute myeloid leukemia (CN-AML) is associated with Intermediate risk which complicates therapeutic options. Lower overall HOX/TALE expression appears to correlate with more favorable prognosis/better response to treatment in some leukemias and solid cancer. The functional significance of the associated gene expression and response to chemotherapy is not known. Three independent microarray datasets obtained from large patient cohorts along with quantitative PCR validation was used to identify a four gene HOXA/TALE signature capable of prognostic stratification. Biochemical analysis was used to identify interactions between the four encoded proteins and targeted knockdown used to examine the functional importance of sustained expression of the signature in leukemia maintenance and response to chemotherapy. An eleven HOXA/TALE code identified in an Intermediate risk (n=315) compared to a Favourable group of patients (n=105) was reduced to a four gene signature of HOXA6, HOXA9, PBX3 and MEIS1 by iterative analysis of independent platforms. This signature maintained the Favorable/Intermediate risk partition and where applicable, correlated with overall survival in CN-AML. We further show that cell growth and function is dependent on maintained levels of these core genes and that direct targeting of HOXA/PBX3 sensitizes CN-AML cells to standard chemotherapy. Together the data support a key role for HOXA/TALE in CN-AML and demonstrate that targeting of clinically significant HOXA/PBX3 elements may provide therapeutic benefit to these patients.
The size and shape of shells used by hermit crabs: A multivariate analysis of Clibanarius erythropus
Resumo:
Shell attributes Such as weight and shape affect the reproduction, growth, predator avoidance and behaviour of several hermit crab species. Although the importance of these attributes has been extensively investigated, it is still difficult to assess the relative role of size and shape. Multivariate techniques allow concise and efficient quantitative analysis of these multidimensional properties, and this paper aims to understand their role in determining patterns of hermit crab shell use. To this end, a multivariate approach based on a combination of size-unconstrained (shape) PCA and RDA ordination was used to model the biometrics of southern Mediterranean Clibanarius erythropus Populations and their shells. Patterns of shell utilization and morphological gradients demonstrate that size is more important than shape, probably due to the limited availability of empty shells in the environment. The shape (e.g. the degree of shell elongation) and weight of inhabited shells vary considerably in both female and male crabs. However, these variations are clearly accounted for by crab biometrics in males only. Oil the basis of statistical evidence and findings from past studies. it is hypothesized that larger males of adequate size and strength have access to the larger, heavier and relatively more available shells of the globose Osilinus turbinatus, which cannot be used by average-sized males or by females investing energy in egg production. This greater availability allows larger males to select more Suitable Shapes. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
We report on another alternative sensing platform for the detection of protein biomarker (PSA–ACT complex) based on homogenous growth of Au nanocrystals in solution phase. The immuno-recognition event is translated into the gold nanoparticle growth signal which can be intuitively recognized by an unaided eye, or quantitatively measured by an UV–vis spectrophotometric analysis. Surface plasmonic signature and kinetics of the Au nanogrowth in the homogenous phase containing of HAuCl4, AA, and CTAB have also been studied to provide suitable parameters for the immunoassay. As a result, detection limit of PSA–ACT complex was determined to be 10 fM. The result indicated that this is a very sensitive, robust, simple, and economic strategy to detect protein biomarkers, and it has great potential to detect other biological interactions.
Resumo:
To compare the rejection rates of non-small cell lung cancer (NSCLC) samples obtained by differing sampling methods for testing by Sanger sequencing for epidermal growth factor receptor (EGFR) mutations. To assess the association between unsatisfactory outcomes and the quantity of DNA extracted from cytological versus histological samples.
Resumo:
Metastasis accounts largely for the high mortality rate of colorectal cancer (CRC) patients. In this study, we performed comparative proteome analysis of primary CRC cell lines HCT-116 and its metastatic derivative E1 using 2-D DIGE. We identified 74 differentially expressed proteins, many of which function in transcription, translation, angiogenesis signal transduction, or cytoskeletal remodeling pathways, which are indispensable cellular processes involved in the metastatic cascade. Among these proteins, stathmin-1 (STMN1) was found to be highly up-regulated in E1 as compared to HCT-116 and was thus selected for further functional studies. Our results showed that perturbations in STMN1 levels resulted in significant changes in cell migration, invasion, adhesion, and colony formation. We further showed that the differential expression of STMN1 correlated with the cells' metastatic potential in other paradigms of CRC models. Using immunohistochemistry, we also showed that STMN1 was highly expressed in colorectal primary tumors and metastatic tissues as compared to the adjacent normal colorectal tissues. Furthermore, we also showed via tissue microarray analyses of 324 CRC tissues and Kaplan-Meier survival plot that CRC patients with higher expression of STMN1 have poorer prognosis.
Resumo:
FKBPL has been implicated in processes associated with cancer, including regulation of tumor growth and angiogenesis with high levels of FKBPL prognosticating for improved patient survival. Understanding how FKBPL levels are controlled within the cell is therefore critical. We have identifed a novel role for RBCK1 as an FKBPL-interacting protein, which regulates FKBPL stability at the post-translational level via ubiquitination. Both RBCK1 and FKBPL are upregulated by 17-b-estradiol and interact within heat shock protein 90 chaperone complexes, together with estrogen receptor-a (ERa). Furthermore, FKBPL and RBCK1 associate with ERa at the promoter of the estrogen responsive gene, pS2, and regulate pS2 levels. MCF-7 clones stably overexpressing RBCK1 were shown to have reduced proliferation and increased levels of FKBPL and p21. Furthermore, these clones were resistant to tamoxifen therapy, suggesting that RBCK1 could be a predictive marker of response to endocrine therapy. RBCK1 knockdown using targeted small interfering RNA resulted in increased proliferation and increased sensitivity to tamoxifen treatment. Moreover, in support of our in vitro data, analysis of mRNA microarray data sets demonstrated that high levels of FKBPL and RBCK1 correlated with increased patient survival, whereas high RBCK1 predicted for a poor response to tamoxifen. Our findings support a role for RBCK1 in the regulation of FKBPL with important implications for estrogen receptor signaling, cell proliferation and response to endocrine therapy.
Resumo:
Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.
Resumo:
Desiccation crack formation is a key process that needs to be understood in assessment of landfill cap performance under anticipated future climate change scenarios. The objectives of this study were to examine: (a) desiccation cracks and impacts that roots may have on their formation and resealing, and (b) their impacts on hydraulic conductivity under anticipated climate change precipitation scenarios. Visual observations, image analysis of thin sections and hydraulic conductivity tests were carried out on cores collected from two large-scale laboratory trial landfill cap models (∼80 × 80 × 90 cm) during a year of four simulated seasonal precipitation events. Extensive root growth in the topsoil increased percolation of water into the subsurface, and after droughts, roots grew deep into low-permeability layers through major cracks which impeded their resealing. At the end of 1 year, larger cracks had lost resealing ability and one single, large, vertical crack made the climate change precipitation model cap inefficient. Even though the normal precipitation model had developed desiccation cracks, its integrity was preserved better than the climate change precipitation model.