977 resultados para grain refinement of magnesium alloys


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy absorbed by magnesium alloys (high-pressure die-cast (HPDC) AM20, AM50, AM60, and extruded AZ31) in a buckling test was significantly greater than the aluminum alloy 6061 T6 and particularly mild steel of a similar weight, but was less than that of the aluminum alloy and steel for the same thickness (Figure 6).26 This indicates that mass savings can be achieved by the substitution with magnesium alloys to achieve similar energy-absorbing characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equi-channel angular pressing (ECAP) of a Pb–Sn eutectic alloy up to six passes in a T-shaped die, rather than a conventional L-shaped die, was studied for grain refinement. The effect of ECAP on the hardness and tensile properties was studied. Microstructure predominately changed in the early part of the ECAP process and became equiaxed and uniformly distributed in both the longitudinal and the transverse sections after four passes. There occurred substantial softening over the first two passes—hardness of 10 Hv, yield strength of 14.2 MPa and tensile strength of 16.3 MPa in the as-cast condition decreased upon two passes to 6 Hv, 9.7 MPa and 13.0 MPa, respectively. The ductility (% elongation) increased drastically from <50% in the as-cast condition to 150% upon two passes, and further increased to 230% after four passes. Various tensile properties and concurrent microstructural evolution were used to develop a mutual relationship among them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, the role of dynamic strain induced transformation on ferrite grain refinement was investigated using different thermomechanical processing routes. A Ni-30Fe austenitic model alloy was also employed to study the evolution of the deformation structure under different deformation conditions. It was shown that the extreme refinement of ferrite is more likely due to the formation of extensive high angle intragranular defects in the austenite through deformation. Among the different thermomechanical parameters, the deformation temperature had a significant effect on the intragranular defect characteristics. There was a transition where the cell dislocation structure changed to laminar microband structures with a decrease in the deformation temperature. Moreover, the ultrafine grained structure was also successfully produced through static transformation using warm deformation process; in other words, concurrent deformation and transformation are not necessary for ultrafine ferrite formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore the relation between preeclampsia risk and maternal intake of dietary fiber, potassium, magnesium and calcium. STUDY DESIGN: We conducted a case-control study of 172 preeclamptics and 339 normotensive controls. Maternal dietary intake was assessed using a food frequency questionnaire. Logistic regression procedures were used to estimate the association between each dietary factor and preeclampsia risk. RESULTS: Fiber intake was inversely associated with the risk of preeclampsia. When extreme quartiles of total fiber intake were compared, the odds ratio (OR) for preeclampsia was 0.46 (95% confidence interval [CI] 0.23-0.92). The multivariate OR for preeclampsia for women in the top quartile of potassium intake (>4.1 g/d) versus the lowest quartile (<2.4 g/d) was 0.49 (95% CI 0.24-0.99). There was some evidence of a reduced risk of preeclampsia with a high intake of magnesium and calcium, though these results were not statistically significant. Intake of fruits and vegetables, low-fat dairy products, total cereal and dark bread were each associated with a reduced risk of preeclampsia. CONCLUSION: Our results support previous reports that suggest that diets high in fiber and potassium are associated with a reduced risk of hypertension. Maternal intake of recommended amounts of foods rich in fiber, potassium and other nutrients may reduce the risk of preeclampsia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Researches the use of the electron back scattered diffraction analysis (EBSD) technique in investigating deformation modes in the magnesium alloy Mg-3Al-1Zn. Results showed the importance of non-basal slip, compression and double twinning during deformation of rolled Mg-3Al-1Zn. In as-cast material, twinning behaviour was more varied and complicated and could even occur upon unloading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deformation behaviour of magnesium alloy AZ31 was examined. The work found that dynamic recrystallisation operates during hot deformation. The influence that different process variables have on this mechanism were quantified. The optimisation of dynamic recrystallisation allows magnesium alloys to be formed into products more easily whilst developing enhanced final properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strongly textured sheet of magnesium alloy AZ31 has been subjected to tensile testing at temperatures between ambient and 300°C. Structures have been examined by optical and transmission electron microscopy and also by atomic force microscopy to quantify surface displacements seen at grain boundaries. Plastic anisotropy varies strongly with test temperature as was observed previously by Agnew and Duygulu. The present findings do not support the view that crystallographic <c + a> becomes a major contributor to deformation at higher temperatures. Rather, the material behaviour reflects an increasing contribution from grain boundary sliding despite the relatively high strain rate (I 0-3 s-1) used in the mechanical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, Mg-xCa (x = 0.5, 1.0, 2.0, 5.0, 10.0, 15.0 and 20.0 %, wt.%, hereafter) and Mg-1Ca-1Y alloys were investigated as new biodegradable bone implant materials. The compressive strength, ultimate strength and hardness of the Mg-Ca alloys increased, whilst the corrosion rate and biocompatibility decreased, with the increase of the Ca content in the Mg-Ca alloys; higher Ca content caused the Mg-Ca alloy to become brittle. Solutions of simulated body fluid (SBF) and modified minimum essential media (MMEM) with the immersion of Mg-xCa and Mg-1Ca-1Y alloys showed strong alkalisation. The yttrium addition to the Mg-Ca alloys does not improve the corrosion resistance of the Mg-1Ca-1Y alloy as expected compared to the Mg-1Ca alloy. It is suggested that Mg-Ca alloys with Ca additions less than 1.0 wt.% exhibited good biocompatibility and low corrosion rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper an effect of severe plastic deformation (SPD) on the microstructural evolution and properties of a plain C-Mn steel was investigated. The SPD was accomplished by the MaxStrain system which deforms material along two perpendicular axes while the deformation along the third axis is fully constrained. The applied amounts of true strains were 5 and 20 in total. Deformation was conducted at room and 500°C temperatures. Some samples deformed at room temperature were subsequently annealed at 500°C. A microstructural analysis by SEM/EBSD was used for recognition the low- and high-angle grain boundaries. It was found that the collective effect of severe plastic deformation (true strain of 20) and further annealing promotes the formation of high-angle grain boundaries and uniform fine grained microstructure. The refinement of ferrite microstructure results in a significant increase in strength and hardness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data collection addresses the problem of low ductility in magnesium alloys, preventing their wider use. It examines a series of dilute alloys in order to determine the effect of composition on the extrusion behaviour and texture, and on the room temperature tensile ductility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, analytical models of pure bending are developed to simulate a particular type of bend test and to determine possible errors arising from approximations used in analyzing experimental data. Analytical models proposed for steels include a theoretical solution of pure bending and a series of finite element models, based on the von Mises yield function, are subjected to different stress and strain conditions. The results show that for steel sheets the difference between measured and calculated results of the moment-curvature behaviour is small and the numerical results from the finite element models indicate that experimental results obtained from the test are acceptable in the range of the pure bending operation. Further for magnesium alloys, which exhibit unsymmetrical yielding, the algorithm of the yield function with a linear isotropic hardening model is implemented by programming a user subroutine in Abaqus for bending simulations of magnesium. The simulations using the proposed user subroutine extract better results than those using the von Mises yield function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg alloy AZ31 is an attractive candidate for coronary artery stents, as it possesses excellent biocompatibility in human body and good mechanical properties. However, AZ31 magnesium alloys generally have poor corrosion resistance in the body environment. This paper reports on the early stages of an investigation into the corrosion mechanism and the morphology of corrosion of AZ31 in simulated body fluid (SBF). The investigation will also consider ways of improving corrosion resistance of this alloy in SBF through the use of ionic liquids. The results to date have shown that AZ31 suffers severe localized pitting corrosion in SBF. The pits mainly develop adjacent to the Al-Mn intermetallic second phase in the α matrix. Energy Dispersive X-Ray Spectroscopy results revealed the presence of Mg, O, Ca, and P in the layer of corrosion product. Treatment of the AZ31 alloy prior to corrosion testing in SBF with the ionic liquid trimethyl (butyl) phosphonium diphenyl phosphate (P1444DPP) produced some increase in the corrosion resistance of the alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the effects of kinematic and geometric asymmetries in rolling during multi-pass processing of IF steel are examined. The theoretical investigation by final element simulations and experimental investigations by means of electron-backscatter diffraction analysis and tensile tests suggest that asymmetric rolling increases the total imposed strain compared to symmetric rolling, and largely re-distributes the strain components due to additional shear. This enhances the intensity of grain refinement, strengthens and tilts crystallographic orientations, and increases mechanical strength. The effect is highest in the asymmetric rolling with differential roll diameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper was to address the effects of multiple laser shock processing (LSP) impacts with different pulse energy on mechanical properties and wear behaviors of AISI 8620 steel. Wear analyses were conducted by means of calculation of volume loss and scanning electron microscope (SEM) of the wear surface. Surface profiles, roughness and micro-hardness were measured. The micro-structures in the surface layer of the untreated and LSPed samples (treated by multiple LSP impacts) were investigated by using transmission electron microscopy (TEM) observations. Experimental results and analyses indicated that multiple LSP impacts can remarkably improve the wear resistance of AISI 8620 steel, and the wear mechanism of multiple LSP impacts on AISI 8620 steel was also entirely revealed. The wear process of the unpolished sample subjected to multiple LSP impacts can be described as follows: the wear rate was big at the beginning of sliding dry wear, but then decreased after the micro-indention in the sample surface was polished to the disappear. This phenomenon can be attributed to the fact that multiple LSP impacts generate many micro-indents in the sample surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The collection contains an EBSD map of AZ31 compressed to 1% strain at room temperature in a direction parallel to the extrusion direction. The map was collected as part of an investigation into the role of twinning in the occurrence of a yield point elongation during deformation.