896 resultados para gold nanoparticles glucaric acid heterogeneous catalysis glucose oxidation
Resumo:
Size-controlled, catalytically active PVP-stabilised Pd nanoparticles have been studied by operando liquid phase XAS during the Suzuki cross-coupling of iodonanisole and phenylboronic acid in MeOH-toluene using KOMe base. XAS reveals nanoparticles are stable to metal leaching throughout the reaction, with surface density Pd defect sites directly implicated in the catalytic cycle. The efficacy of popular selective chemical and structural poisons for distinguishing heterogeneous and homogeneous contributions in Pd catalysed cross-couplings is also explored. © 2010 The Royal Society of Chemistry.
Resumo:
Siliceous mesoporous molecular sieves (SBA-15) have been functionalised with propylsulfonic acid groups by both co-condensing 3-mercaptopropyltrimethoxysilane with the solid at the synthesis (sol-gel) stage and by grafting the same compound to pre-prepared SBA-15, followed, in both cases, by oxidation to sulfonic acid. The acidic and catalytic properties of the supported sulfonic acids prepared in the two ways have been compared, using ammonia adsorption calorimetry and the benzylation reaction between benzyl alcohol and toluene. Using a combination of X-ray photoelectron spectroscopy and other analytical techniques, the level of functionalisation and the extent of subsequent oxidation of tethered thiol to sulfonic acid, both in the bulk and close to the surface of SBA-15 particles, have been assessed. The research shows that the co-condensing route leads to higher levels of functionalisation than the grafting route. The extent of oxidation of added thiol to acid groups is similar using the two routes, about 70% near the surface and only 50% in the bulk. Comparison is made with polymer supported sulfonic acid catalysts, Amberlysts 15 and 35, and Nafion. Nafion shows the highest acid strength and the highest specific catalytic activity of all materials studied. Amongst the other materials, average acid strengths are broadly similar but there appears to be a relationship between the concentration of acid sites on the catalysts and their specific activity in the benzylation reaction. A model is proposed to explain this, in which clustering of sulfonic acid groups, even to a small extent, leads to disproportionately enhanced catalytic activity. © 2009 Elsevier B.V. All rights reserved.
Resumo:
The effects of lipoic acid and dihydrolipoic acid were explored on total thiol maintenance in diabetic and non-diabetic human erythrocytes in vitro over 22 hr in a 37°C incubation system with no added glucose. Over 18-22.5 hr after treatment in both non-diabetic and diabetic cells, lipoic acid (1 mM) was associated with greater loss of cellular thiols than dihydrolipoic acid (1 mM), compared to respective control values. At 0.1 mM, in non-diabetic cells, although lipoic acid-treated cells' thiol levels were significantly lower than control, there was no significant difference between dihydrolipoic acid-treated cells and control cells regarding thiol levels. In addition, at 0.1 mM, dihydrolipoic acid-treated diabetic cells showed a reduction in thiol levels compared to control. At 0.01 mM, lipoic acid-treated cells had significantly lower measured thiol levels compared with diabetic cells exposed to dihydrolipoic acid, whereas in non-diabetic cells, dihydrolipoic acid-treated erythrocytic thiol levels were significantly greater than those treated with lipoic acid, although there were no other significant differences between the groups. At 22.5 hr, control values of methaemoglobin rose to 6.4 ± 1.1% in diabetic cells and 3.6 ± 2.1% in non-diabetic cells. Lipoic acid (1 mM) showed greater methaemoglobin formation in diabetic rather than non-diabetic cells (13.6 ± 1.5% versus 11.6 ± 1.5%), whereas dihydrolipoic acid-treated diabetic and non-diabetic cells were less potent in methaemoglobin generation (8.5 ± 2.4% and 8.4 ± 1.4%, respectively). These studies suggest that in certain circumstances such as hypoglycaemia, lipoic acid administration may actually be detrimental to cellular oxidant protection status. © 2006 The Authors.
Resumo:
The grafting and sulfation of zirconia conformal monolayers on SBA-15 to create mesoporous catalysts of tunable solid acid/base character is reported. Conformal zirconia and sulfated zirconia (SZ) materials exhibit both Brönsted and Lewis acidity, with the Brönsted/Lewis acid ratio increasing with film thickness and sulfate content. Grafted zirconia films also exhibit amphoteric character, whose Brönsted/Lewis acid site ratio increases with sulfate loading at the expense of base sites. Bilayer ZrO2/SBA-15 affords an ordered mesoporous material with a high acid site loading upon sulfation and excellent hydrothermal stability. Catalytic performance of SZ/SBA-15 was explored in the aqueous phase conversion of glucose to 5-HMF, delivering a 3-fold enhancement in 5-HMF productivity over nonporous SZ counterparts. The coexistence of accessible solid basic/Lewis acid and Brönsted acid sites in grafted SZ/SBA-15 promotes the respective isomerization of glucose to fructose and dehydration of reactively formed fructose to the desired 5-HMF platform chemical.
Wireless Rotating Disk Electrode (wRDE) for assessing Heterogeneous Water Oxidation Catalysts (WOCs)
Resumo:
A novel method for assessing the activity of a powdered water oxidation catalyst (WOC) is described, utilising an easily-prepared wireless rotating disc electrode of the WOC, thereby allowing its activity to be probed, via the observed kinetics of water oxidation by Ce(IV) ions, and so provide invaluable electrochemical information.
Resumo:
Current treatment strategies for the treatment of brain tumor have been hindered primarily by the presence of highly lipophilic insurmountable blood-brain barrier (BBB). The purpose of current research was to investigate the efficiency of engineered biocompatible polymeric nanoparticles (NPs) as drug delivery vehicle to bypass the BBB and enhance biopharmaceutical attributes of anti-metabolite methotrexate (MTX) encapsulated NPs. The NPs were prepared by solvent diffusion method using cationic bovine serum albumin (CBA), and characterized for physicochemical parameters such as particle size, polydispersity index, and zeta-potential; while the surface modification was confirmed by FTIR, and NMR spectroscopy. Developed NPs exhibited zestful relocation of FITC tagged NPs across BBB in albino rats. Further, hemolytic studies confirmed them to be non-toxic and biocompatible as compared to free MTX. In vitro cytotoxicity assay of our engineered NPs on HNGC1 tumor cells proved superior uptake in tumor cells; and elicited potent cytotoxic effect as compared to plain NPs and free MTX solution. The outcomes of the study evidently indicate the prospective of CBA conjugated poly (D,L-lactide-co-glycolide) (PLGA) NPs loaded with MTX in brain cancer bomber with amplified capability to circumvent BBB.
Resumo:
Palladium nanoparticles have been immobilized into an amino-functionalized metal-organic framework (MOF), MIL-101Cr-NH2, to form Pd@MIL-101Cr-NH2. Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16wt%Pd@MIL-101Cr-NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), N-2-sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL-101Cr-NH2, electron tomography was employed to reconstruct the 3D volume of 8wt%Pd@MIL-101Cr-NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high-energy X-rays (60keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki-Miyaura cross-coupling reaction. The best catalytic performance was obtained with the MOF that contained 8wt% palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15mol%). The material can be recycled at least 10times without alteration of its catalytic properties.
Resumo:
Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or β-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining "gold standard" measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development.
Resumo:
info:eu-repo/semantics/published
Resumo:
Mitochondrial fatty acid oxidation (FAO) plays a pivotal role in energy homeostasis, namely during periods of fasting or metabolic stress. FAO defects are a group of inherited metabolic disorders that encompass at least twelve distinct enzyme or transporter deficiencies, and can present with a wide range of clinical symptoms with various degrees of severity. Besides recent advances, many doubts still remain on the degree and characteristics of mitochondrial dysfunction on FAOD and its contribution to the clinical phenotype.
Resumo:
Formic acid oxidation has been widely studied at Pt as a model reaction to understand fundamental aspects of electrocatalytic reactions in fuel cells. Electrocatalytic oxidation of formic acid takes place through two parallel pathways (direct and indirect). The indirect pathway proceeds via CO as an intermediate, which is known to be responsible for the poisoning of Pt and its consequent decrease in activity. Surface modification of Pt with ad-atoms is known to hinder this poisoning and promote the direct pathway. The incorporation of polymers (polyaniline, polycarbazole, polyindole) as supports also increases activity. Irreversibly adsorbed Sb and Bi on Pt are known to show high electrocatalytic activity for formic acid oxidation. This work presents the dependence of Sb and Bi irreversible adsorption on immersion time, metal solution concentration and pH. The activity of Sb and Bi modified Pt was correlated against immersion time and percent coverage of Pt by ad-atoms. Polyaniline support effects in combination with a Bi modified Pt catalyst showed enhancement in oxidation current compared to Pt-Bi.
Resumo:
Tese de Doutoramento, Ciências do Mar da Terra e do Ambiente, Ramo: Ciências e Tecnologias do Ambiente, Especialidade em Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016