998 resultados para genotypic resistance
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
Over the past three decades, penicillin-resistant pneumococci have emerged worldwide. In addition, penicillin-resistant strains have also decreased susceptibility to other β-lactams (including cephalosporins) and these strains are often resistant to other antibiotic groups, making the treatment options much more difficult. Nevertheless, the present in vitro definitions of resistance to penicillin and cephalosporins in pneumococci could not be appropriated for all types of pneumococcal infections. Thus, current levels of resistance to penicillin and cephalosporin seem to have little, if any, clinical relevance in nonmeningeal infections (e.g., pneumonia or bacteremia). On the contrary, numerous clinical failures have been reported in patients with pneumococcal meningitis caused by strains with MICs ≥ 0.12 μg/ml, and penicillin should never be used in pneumococcal meningitis except when the strain is known to be fully susceptible to this drug. Today, therapy for pneumococcal meningitis should mainly be selected on the basis of susceptibility to cephalosporins, and most patients may currently be treated with high-dose cefotaxime (±) vancomycin, depending on the levels of resistance in the patient's geographic area. In this review, we present a practical approach, based on current levels of antibiotic resistance, for treating the most prevalent pneumococcal infections. However, it should be emphasized that the most appropriate antibiotic therapy for infections caused by resistant pneumococci remains controversial, and comparative, randomized studies are urgently needed to clarify the best antibiotic therapy for these infections
Resumo:
Molecular characterization of radical prostatectomy specimens after systemic therapy may identify a gene expression profile for resistance to therapy. This study assessed tumor cells from patients with prostate cancer participating in a phase II neoadjuvant docetaxel and androgen deprivation trial to identify mediators of resistance. Transcriptional level of 93 genes from a docetaxel-resistant prostate cancer cell lines microarray study was analyzed by TaqMan low-density arrays in tumors from patients with high-risk localized prostate cancer (36 surgically treated, 28 with neoadjuvant docetaxel þ androgen deprivation). Gene expression was compared between groups and correlated with clinical outcome. VIM, AR and RELA were validated by immunohistochemistry. CD44 and ZEB1 expression was tested by immunofluorescence in cells and tumor samples. Parental and docetaxel-resistant castration-resistant prostate cancer cell lines were tested for epithelial-to-mesenchymal transition (EMT) markers before and after docetaxel exposure. Reversion of EMT phenotype was investigated as a docetaxel resistance reversion strategy. Expression of 63 (67.7%) genes differed between groups (P < 0.05), including genes related to androgen receptor, NF-k B transcription factor, and EMT. Increased expression of EMT markers correlated with radiologic relapse. Docetaxel-resistant cells had increased EMT and stem-like cell markers expression. ZEB1 siRNA transfection reverted docetaxel resistance and reduced CD44 expression in DU-145R and PC-3R. Before docetaxel exposure, a selected CD44 þ subpopulation of PC-3 cells exhibited EMT phenotype and intrinsic docetaxel resistance; ZEB1/CD44 þ subpopulations were found in tumor cell lines and primary tumors; this correlated with aggressive clinical behavior. This study identifies genes potentially related to chemotherapy resistance and supports evi-dence of the EMT role in docetaxel resistance and adverse clinical behavior in early prostate cancer.
Resumo:
A strain of avian influenza A virus was adapted to grow in mouse peritoneal macrophages in vitro. The adapted strain, called M-TUR, induced a marked cytopathic effect in macrophages from susceptible mice. Mice homozygous (A2G) or heterozygous (F1 hybrids between A2G and several susceptible strains) for the gene Mx, shown previously to induce a high level of resistance towards lethal challenge by a number of myxoviruses in vivo, yielded peritoneal macrophages which were not affected by M-TUR. Peritoneal macrophages could be classified as resistant or susceptible to M-TUR without sacrificing the cell donor. Backcrosses were arranged between (A2G X A/J)F1 and A/J mice. 64 backcross animals could be tested individually both for resistance of their macrophages in vitro after challenge with M-TUR, and for resistance of the whole animal in vivo after challenge with NWS (a neurotropic variant of human influenza A virus). Macrophages from 36 backcross mice were classified as susceptible, and all of these mice died after challenge. Macrophages from 28 mice were classified as resistant, and 26 mice survived challenge. We conclude that resistance of macrophages and resistance of the whole animal are two facets of the same phenomenon.
Resumo:
Epidemiological studies demonstrate an association between insulin resistance, hypertension and cardiovascular morbidity. In addition to its metabolic effects, insulin also has important cardiovascular actions. The sympathetic nervous system and the nitric oxide-l-arginine pathway have emerged as central players in the mediation of these actions. Over the past decade, the underlying mechanisms and the factors that may govern the interaction between insulin and these two major cardiovascular regulatory systems have been studied extensively in healthy people and insulin-resistant individuals. Here we summarize the current understanding and gaps in knowledge on these interactions. We propose that a genetic and/or acquired defect of nitric oxide synthesis could represent a central defect triggering many of the metabolic, vascular and sympathetic abnormalities characteristic of insulin-resistant states, all of which may predispose to cardiovascular disease.
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
Intrinsic resistance to the epidermal growth factor receptor (EGFR; HER1) tyrosine kinase inhibitor (TKI) gefitinib, and more generally to EGFR TKIs, is a common phenomenon in breast cancer. The availability of molecular criteria for predicting sensitivity to EGFR-TKIs is, therefore, the most relevant issue for their correct use and for planning future research. Though it appears that in non-small-cell lung cancer (NSCLC) response to gefitinib is directly related to the occurrence of specific mutations in the EGFR TK domain, breast cancer patients cannot be selected for treatment with gefitinib on the same basis as such EGFR mutations have beenreported neither in primary breast carcinomas nor in several breast cancer cell lines. Alternatively, there is a generalagreement on the hypothesis that the occurrence of molecular alterations that activate transduction pathways downstreamof EGFR (i.e., MEK1/MEK2 - ERK1/2 MAPK and PI-3'K - AKT growth/survival signaling cascades) significantly affect the response to EGFR TKIs in breast carcinomas. However,there are no studies so far addressing a role of EGF-related ligands as intrinsic breast cancer cell modulators of EGFR TKIefficacy. We recently monitored gene expression profiles andsub-cellular localization of HER-1/-2/-3/-4 related ligands (i.e., EGF, amphiregulin, transforming growth factor-α, ß-cellulin,epiregulin and neuregulins) prior to and after gefitinib treatment in a panel of human breast cancer cell lines. First, gefitinibinduced changes in the endogenous levels of EGF-related ligands correlated with the natural degree of breast cancer cellsensitivity to gefitinib. While breast cancer cells intrinsically resistant to gefitinib (IC50 ≥15 μM) markedly up-regulated(up to 600 times) the expression of genes codifying for HERspecific ligands, a significant down-regulation (up to 106 times)of HER ligand gene transcription was found in breast cancer cells intrinsically sensitive to gefitinib (IC50 ≤1 μM). Second,loss of HER1 function differentially regulated the nuclear trafficking of HER-related ligands. While gefitinib treatment induced an active import and nuclear accumulation of the HER ligand NRG in intrinsically gefitinib-resistant breastcancer cells, an active export and nuclear loss of NRG was observed in intrinsically gefitinib-sensitive breast cancer cells.In summary, through in vitro and pharmacodynamic studies we have learned that, besides mutations in the HER1 gene,oncogenic changes downstream of HER1 are the key players regulating gefitinib efficacy in breast cancer cells. It now appears that pharmacological inhibition of HER1 functionalso leads to striking changes in both the gene expression and the nucleo-cytoplasmic trafficking of HER-specific ligands,and that this response correlates with the intrinsic degree of breast cancer sensitivity to the EGFR TKI gefitinib. Therelevance of this previously unrecognized intracrine feedback to gefitinib warrants further studies as cancer cells could bypassthe antiproliferative effects of HER1-targeted therapeutics without a need for the overexpression and/or activation of other HER family members and/or the activation of HER-driven downstream signaling cascades
Resumo:
The majority of cloned resistance (R) genes characterized so far contain a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) domain, where highly conserved motifs are found. Resistance genes analogs (RGAs) are genetic markers obtained by a PCR-based strategy using degenerated oligonucleotide primers drawn from these highly conserved "motifs". This strategy has the advantage of the high degree of structural and amino acid sequence conservation that is observed in R genes. The objective of the present study was to search for RGAs in Carica papaya L. and Vasconcellea cauliflora Jacq. A. DC. Out of three combinations of primers tested, only one resulted in amplification. The amplified product was cloned in pCR2.1TOPO and than sequenced using M13 forward and reverse primers. Forty-eight clones were sequenced from each species. The 96 sequences generated for each species were cleaned of vector sequences and clustered using CAP3 assembler. From the GENEBANK, one RGA was identified in C. papaya showing a BlastX e-value of 2x10-61 to the gb|AAP45165.1| putative disease resistant protein RGA3 (Solanum bulbocastanum). To the extent of our knowledge this is the first report of a RGA in the Caricaceae Dumort family. Preliminary structural studies were performed to further characterize this putative NBS-LRR type protein. Efforts to search for other RGAs in papaya should continue, mostly to provide basis for the development of transgenic papaya with resistance to diseases.
Resumo:
Cereal cyst nematode (CCN, Heterodera avenae) and Hessian fly (HF, Mayetiola destructor) are two major pests affecting wheat crops worldwide including important cereal areas of Spain. Aegilops ventricosa and Ae. triuncialis were used as donors in a strategy to introduce resistance genes (RG) for these pests in hexaploid wheat (Triticum aestivum L.). Two 42 chromosomes introgression lines have been derived from Ae. ventricosa: H-93-8 and H-93-33 carrying genes Cre2 and H27 conferring resistance to CCN and HF, respectively. Line TR-3531 with 42 chromosomes has been derived from Ae. triuncialis and carries RGs conferring resistance for CCN (Cre7) and for HF (H30). Alien material has been incorporated in lines H-93 by chromosomal substitution and recombination, while in line TR-3531 homoeologous recombination affecting small DNA fragments has played a major role. It has been demonstrated that Cre2, Cre7, H27 and H30 are major single dominant genes and not allelic of other previously described RGs. Biochemical and molecular-biology studies of the defense mechanism triggered by Cre2 and Cre7 have revealed specific induction of peroxidase and other antioxidant enzymes. In parallel to these basic studies advanced lines carrying resistance genes for CNN and/or HF have been developed. Selection was done using molecular markers for eventually «pyramiding» resistance genes. Several isozyme and RAPD markers have been described and, currently, new markers based on transposable elements and NBS-LRR sequences are being developed. At present, two advanced lines have already been included at the Spanish Catalogue of Commercial Plant Varieties.
Resumo:
Three models of flow resistance (a Keulegan-type logarithmic law and two models developed for large-scale roughness conditions: the full logarithmic law and a model based on an inflectional velocity profile) were calibrated, validated and compared using an extensive database (N = 1,533) from rivers and flumes, representative of a wide hydraulic and geomorphologic range in the field of gravel-bed and mountain channels. It is preferable to apply the model based on an inflectional velocity profile in the relative submergence (y/d90) interval between 0.5 and 15, while the full logarithmic law is preferable for values below 0.5. For high relative submergence, above 15, either the logarithmic law or the full logarithmic law can be applied. The models fitted to the coarser percentiles are preferable to those fitted to the median diameter, owing to the higher explanatory power achieved by setting a model, the smaller difference in the goodness-of-fit between the different models and the lower influence of the origin of the data (river or flume).
Resumo:
Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.
Resumo:
We studied whether PPARβ/δ deficiency modifies the effects of high fructose intake (30% fructose in drinking water) on glucose tolerance and adipose tissue dysfunction, focusing on the CD36-dependent pathway that enhances adipose tissue inflammation and impairs insulin signaling. Fructose intake for 8weeks significantly increased body and liver weight, and hepatic triglyceride accumulation in PPARβ/δ-deficient mice but not in wild-type mice. Feeding PPARβ/δ-deficient mice with fructose exacerbated glucose intolerance and led to macrophage infiltration, inflammation, enhanced mRNA and protein levels of CD36, and activation of the JNK pathway in white adipose tissue compared to those of water-fed PPARβ/δ-deficient mice. Cultured adipocytes exposed to fructose also exhibited increased CD36 protein levels and this increase was prevented by the PPARβ/δ activator GW501516. Interestingly, the levels of the nuclear factor E2-related factor 2 (Nrf2), a transcription factor reported to up-regulate Cd36 expression and to impair insulin signaling, were increased in fructose-exposed adipocytes whereas co-incubation with GW501516 abolished this increase. In agreement with Nrf2 playing a role in the fructose-induced CD36 protein level increases, the Nrf2 inhibitor trigonelline prevented the increase and the reduction in insulin-stimulated AKT phosphorylation caused by fructose in adipocytes. Protein levels of the well-known Nrf2 target gene NAD(P)H: quinone oxidoreductase 1 (Nqo1) were increased in water-fed PPARβ/δ-null mice, suggesting that PPARβ/δ deficiency increases Nrf2 activity; and this increase was exacerbated in fructose-fed PPARβ/δ-deficient mice. These findings indicate that the combination of high fructose intake and PPARβ/δ deficiency increases CD36 protein levels via Nrf2, a process that promotes chronic inflammation and insulin resistance in adipose tissue.