942 resultados para generalized multiscale entropy
Resumo:
Marginal generalized linear models can be used for clustered and longitudinal data by fitting a model as if the data were independent and using an empirical estimator of parameter standard errors. We extend this approach to data where the number of observations correlated with a given one grows with sample size and show that parameter estimates are consistent and asymptotically Normal with a slower convergence rate than for independent data, and that an information sandwich variance estimator is consistent. We present two problems that motivated this work, the modelling of patterns of HIV genetic variation and the behavior of clustered data estimators when clusters are large.
Resumo:
The advances in computational biology have made simultaneous monitoring of thousands of features possible. The high throughput technologies not only bring about a much richer information context in which to study various aspects of gene functions but they also present challenge of analyzing data with large number of covariates and few samples. As an integral part of machine learning, classification of samples into two or more categories is almost always of interest to scientists. In this paper, we address the question of classification in this setting by extending partial least squares (PLS), a popular dimension reduction tool in chemometrics, in the context of generalized linear regression based on a previous approach, Iteratively ReWeighted Partial Least Squares, i.e. IRWPLS (Marx, 1996). We compare our results with two-stage PLS (Nguyen and Rocke, 2002A; Nguyen and Rocke, 2002B) and other classifiers. We show that by phrasing the problem in a generalized linear model setting and by applying bias correction to the likelihood to avoid (quasi)separation, we often get lower classification error rates.
Resumo:
Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.
Resumo:
Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.
Resumo:
Approximate entropy (ApEn) of blood pressure (BP) can be easily measured based on software analysing 24-h ambulatory BP monitoring (ABPM), but the clinical value of this measure is unknown. In a prospective study we investigated whether ApEn of BP predicts, in addition to average and variability of BP, the risk of hypertensive crisis. In 57 patients with known hypertension we measured ApEn, average and variability of systolic and diastolic BP based on 24-h ABPM. Eight of these fifty-seven patients developed hypertensive crisis during follow-up (mean follow-up duration 726 days). In bivariate regression analysis, ApEn of systolic BP (P<0.01), average of systolic BP (P=0.02) and average of diastolic BP (P=0.03) were significant predictors of hypertensive crisis. The incidence rate ratio of hypertensive crisis was 14.0 (95% confidence interval (CI) 1.8, 631.5; P<0.01) for high ApEn of systolic BP as compared to low values. In multivariable regression analysis, ApEn of systolic (P=0.01) and average of diastolic BP (P<0.01) were independent predictors of hypertensive crisis. A combination of these two measures had a positive predictive value of 75%, and a negative predictive value of 91%, respectively. ApEn, combined with other measures of 24-h ABPM, is a potentially powerful predictor of hypertensive crisis. If confirmed in independent samples, these findings have major clinical implications since measures predicting the risk of hypertensive crisis define patients requiring intensive follow-up and intensified therapy.
Resumo:
Materials are inherently multi-scale in nature consisting of distinct characteristics at various length scales from atoms to bulk material. There are no widely accepted predictive multi-scale modeling techniques that span from atomic level to bulk relating the effects of the structure at the nanometer (10-9 meter) on macro-scale properties. Traditional engineering deals with treating matter as continuous with no internal structure. In contrast to engineers, physicists have dealt with matter in its discrete structure at small length scales to understand fundamental behavior of materials. Multiscale modeling is of great scientific and technical importance as it can aid in designing novel materials that will enable us to tailor properties specific to an application like multi-functional materials. Polymer nanocomposite materials have the potential to provide significant increases in mechanical properties relative to current polymers used for structural applications. The nanoscale reinforcements have the potential to increase the effective interface between the reinforcement and the matrix by orders of magnitude for a given reinforcement volume fraction as relative to traditional micro- or macro-scale reinforcements. To facilitate the development of polymer nanocomposite materials, constitutive relationships must be established that predict the bulk mechanical properties of the materials as a function of the molecular structure. A computational hierarchical multiscale modeling technique is developed to study the bulk-level constitutive behavior of polymeric materials as a function of its molecular chemistry. Various parameters and modeling techniques from computational chemistry to continuum mechanics are utilized for the current modeling method. The cause and effect relationship of the parameters are studied to establish an efficient modeling framework. The proposed methodology is applied to three different polymers and validated using experimental data available in literature.
Resumo:
INTRODUCTION: Sedative and analgesic drugs are frequently used in critically ill patients. Their overuse may prolong mechanical ventilation and length of stay in the intensive care unit. Guidelines recommend use of sedation protocols that include sedation scores and trials of sedation cessation to minimize drug use. We evaluated processed electroencephalography (response and state entropy and bispectral index) as an adjunct to monitoring effects of commonly used sedative and analgesic drugs and intratracheal suctioning. METHODS: Electrodes for monitoring bispectral index and entropy were placed on the foreheads of 44 critically ill patients requiring mechanical ventilation and who previously had no brain dysfunction. Sedation was targeted individually using the Ramsay Sedation Scale, recorded every 2 hours or more frequently. Use of and indications for sedative and analgesic drugs and intratracheal suctioning were recorded manually and using a camera. At the end of the study, processed electroencephalographical and haemodynamic variables collected before and after each drug application and tracheal suctioning were analyzed. Ramsay score was used for comparison with processed electroencephalography when assessed within 15 minutes of an intervention. RESULTS: The indications for boli of sedative drugs exhibited statistically significant, albeit clinically irrelevant, differences in terms of their association with processed electroencephalographical parameters. Electroencephalographical variables decreased significantly after bolus, but a specific pattern in electroencephalographical variables before drug administration was not identified. The same was true for opiate administration. At both 30 minutes and 2 minutes before intratracheal suctioning, there was no difference in electroencephalographical or clinical signs in patients who had or had not received drugs 10 minutes before suctioning. Among patients who received drugs, electroencephalographical parameters returned to baseline more rapidly. In those cases in which Ramsay score was assessed before the event, processed electroencephalography exhibited high variation. CONCLUSIONS: Unpleasant or painful stimuli and sedative and analgesic drugs are associated with significant changes in processed electroencephalographical parameters. However, clinical indications for drug administration were not reflected by these electroencephalographical parameters, and barely by sedation level before drug administration or tracheal suction. This precludes incorporation of entropy and bispectral index as target variables for sedation and analgesia protocols in critically ill patients.
Resumo:
For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device— sometimes consisting of hundreds of individual particles—and watch as a device ‘turns on’ and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.
Resumo:
BACKGROUND: Aim of this study was to analyse the relationship between popliteal artery aneurysm (PAA) and generalized arteriomegaly. PATIENTS AND METHODS: In this consecutive serie, thirty-three patients (1 woman, mean age 69.7 +/- 9.6 years) undergoing PAA repair between 1996 and 2000 agreed to participate in a duplex screening program to assess the diameters of the infrarenal abdominal aorta, common and external iliac, common and superficial femoral and contralateral popliteal arteries as well as common carotid and brachial arteries. RESULTS: The prevalence of arteriomegaly and aneurysmal disease, respectively, was as follows: abdominal aorta 15/33 (45.5%) and 8/33 (24.2%), common iliac artery 34/66 (51.5%) and 23/66 (34.8%), common femoral artery 55/66 (83.3%) and 7/66 (10.6%) as well as contralateral popliteal artery 7/33 (21.2%) 15/33 (45.5%). Significantly larger carotid artery diameters were found comparing PAA patients with age- and body surface adjusted healthy controls (p < 0.001). Furthermore, patients with multiple peripheral arterial aneurysms had significantly larger diameters of the brachial (p < 0.02) and external iliac (p < 0.005). CONCLUSIONS: Our findings support the hypothesis of a diathesis for a generalized arteriomegaly with a predilection for further aneurysms of the abdominal aorta, iliac arteries, femoral and contralateral popliteal arteries in patients with PAA.
Resumo:
OBJECT: The authors studied the long-term efficacy of deep brain stimulation (DBS) of the posteroventral lateral globus pallidus internus up to 2 years postoperatively in patients with primary non-DYT1 generalized dystonia or choreoathetosis. The results are briefly compared with those reported for DBS in DYT1 dystonia (Oppenheim dystonia), which is caused by the DYT1 gene. METHODS: Enrollment in this prospective expanded pilot study was limited to adult patients with severely disabling, medically refractory non-DYT1 generalized dystonia or choreoathetosis. Six consecutive patients underwent follow-up examinations at defined intervals of 3 months, 1 year, and 2 years postsurgery. There were five women and one man, and their mean age at surgery was 45.5 years. Formal assessments included both the Burke-Fahn-Marsden dystonia scale and the recently developed Unified Dystonia Rating Scale. Two patients had primary generalized non-DYT1 dystonia, and four suffered from choreoathetosis secondary to infantile cerebral palsy. Bilateral quadripolar DBS electrodes were implanted in all instances, except in one patient with markedly asymmetrical symptoms. There were no adverse events related to surgery. The Burke-Fahn-Marsden scores in the two patients with generalized dystonia improved by 78 and 71% at 3 months, by 82 and 69% at 1 year, and by 78 and 70% at 2 years postoperatively. This was paralleled by marked amelioration of disability scores. The mean improvement in Burke-Fahn-Marsden scores in patients with choreoathetosis was 12% at 3 months, 29% at 1 year, and 23% at 2 years postoperatively, which was not significant. Two of these patients thought that they had achieved marked improvement at 2 years postoperatively, although results of objective evaluations were less impressive. In these two patients there was a minor but stable improvement in disability scores. All patients had an improvement in pain scores at the 2-year follow-up review. Medication was tapered off in both patients with generalized dystonia and reduced in two of the patients with choreoathetosis. All stimulation-induced side effects were reversible on adjustment of the DBS settings. Energy consumption of the batteries was considerably higher than in patients with Parkinson disease. CONCLUSIONS: Chronic pallidal DBS is a safe and effective procedure in generalized non-DYT1 dystonia, and it may become the procedure of choice in patients with medically refractory dystonia. Postoperative improvement of choreoathetosis is more modest and varied, and subjective ratings of outcome may exceed objective evaluations.