974 resultados para gene targeting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we identified a novel asthma susceptibility gene, NPSR1 (neuropeptide S receptor 1) on chromosome 7p14.3 by the positional cloning strategy. An earlier significant linkage mapping result among Finnish Kainuu asthma families was confirmed in two independent cohorts: in asthma families from Quebec, Canada and in allergy families from North Karelia, Finland. The linkage region was narrowed down to a 133-kb segment by a hierarchial genotyping method. The observed 77-kb haplotype block showed 7 haplotypes and a similar risk and nonrisk pattern in all three populations studied. All seven haplotypes occur in all three populations at frequences > 2%. Significant elevated relative risks were detected for elevated total IgE (immunoglobulin E) or asthma. Risk effects of the gene variants varied from 1.4 to 2.5. NPSR1 belongs to the G protein-coupled receptor (GPCR) family with a topology of seven transmembrane domains. NPSR1 has 9 exons, with the two main transcripts, A and B, encoding proteins of 371 and 377 amino acids, respectively. We detected a low but ubiquitous expression level of NPSR1-B in various tissues and endogenous cell lines while NPSR1-A has a more restricted expression pattern. Both isoforms were expressed in the lung epithelium. We observed aberrant expression levels of NPSR1-B in smooth muscle in asthmatic bronchi as compared to healthy. In an experimental mouse model, the induced lung inflammation resulted in elevated Npsr1 levels. Furthermore, we demonstrated that the activation of NPSR1 with its endogenous agonist, neuropeptide S (NPS), resulted in a significant inhibition of the growth of NPSR1-A overexpressing stable cell lines (NPSR1-A cells). To determine which target genes were regulated by the NPS-NPSR1 pathway, NPSR1-A cells were stimulated with NPS, and differentially expressed genes were identified using the Affymetrix HGU133Plus2 GeneChip. A total of 104 genes were found significantly up-regulated and 42 down-regulated 6 h after NPS administration. The up-regulated genes included many neuronal genes and some putative susceptibility genes for respiratory disorders. By Gene Ontology enrichment analysis, the biological process terms, cell proliferation, morphogenesis and immune response were among the most altered. The expression of four up-regulated genes, matrix metallopeptidase 10 (MMP10), INHBA (activin A), interleukin 8 (IL8) and EPH receptor A2 (EPHA2), were verified and confirmed by quantitative reverse-transcriptase-PCR. In conclusion, we identified a novel asthma susceptibility gene, NPSR1, on chromosome 7p14.3. NPS-NPSR1 represents a novel pathway that regulates cell proliferation and immune responses, and thus may have functional relevance in the pathogenesis of asthma.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methylenetetrahydrofolate reductase (MTHFR) gene codes for the MTHFR enzyme which plays a key role in the pathway of folate and methionine metabolism. Polymorphisms of genes in this pathway affect its regulation and have been linked to lymphoma. In this study we examined whether we could detect an association between two common non-synonomous MTHFR polymorphisms, 677C>T (rs1801133) and 1298A>C (rs1801131), and susceptibility to non-Hodgkin lymphoma (NHL) in an Australian case-control cohort. We found no significant differences between genotype or allele frequencies for either polymorphisms between lymphoma cases and controls. We also explored whether epigenetic modification of MTHFR, specifically DNA methylation of a CpG island in the MTHFR promoter region, is associated with NHL using blood samples from patients. No difference in methylation levels was detected between the case and control samples suggesting that although hypermethylation of MTHFR has been reported in tumour tissues, particularly in the diffuse large B-cell lymphoma subtype of NHL, methylation of this MTHFR promoter CpG island is not a suitable epigenetic biomarker for NHL diagnosis or prognosis in peripheral blood samples. Further studies into epigenetic variants could focus on genes that are robustly associated with NHL susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polygenic profiling has been proposed for elite endurance performance, using an additive model determining the proportion of optimal alleles in endurance athletes. To investigate this model’s utility for elite triathletes, we genotyped seven polymorphisms previously associated with an endurance polygenic profile (ACE Ins/Del, ACTN3 Arg577Ter, AMPD1 Gln12Ter, CKMM 1170bp/985+185bp, HFE His63Asp, GDF8 Lys153Arg and PPARGC1A Gly482Ser) in a cohort of 196 elite athletes who participated in the 2008 Kona Ironman championship triathlon. Mean performance time (PT) was not significantly different in individual marker analysis. Age, sex, and continent of origin had a significant influence on PT and were adjusted for. Only the AMPD1 endurance-optimal Gln allele was found to be significantly associated with an improvement in PT (model p=5.79 x 10-17, AMPD1 genotype p=0.01). Individual genotypes were combined into a total genotype score (TGS); TGS distribution ranged from 28.6 to 92.9, concordant with prior studies in endurance athletes (mean±SD: 60.75±12.95). TGS distribution was shifted toward higher TGS in the top 10% of athletes, though the mean TGS was not significantly different (p=0.164) and not significantly associated with PT even when adjusted for age, sex, and origin. Receiver operating characteristic curve analysis determined that TGS alone could not significantly predict athlete finishing time with discriminating sensitivity and specificity for three outcomes (less than median PT, less than mean PT, or in the top 10%), though models with the age, sex, continent of origin, and either TGS or AMPD1 genotype could. These results suggest three things: that more sophisticated genetic models may be necessary to accurately predict athlete finishing time in endurance events; that non-genetic factors such as training are hugely influential and should be included in genetic analyses to prevent confounding; and that large collaborations may be necessary to obtain sufficient sample sizes for powerful and complex analyses of endurance performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been reported that both OLR1 and PCSK9 genes are related to various vascular diseases such as atherosclerosis, cardiovascular disease, peripheral artery disease and stroke, in particular ischemic stroke. The prevalence of PCSK9 rs505151 and OLR1 rs11053646 variants in ischemic stroke were 0.005 and 0.116, respectively. However, to date, association between OLR1 rs11053646 and PCSK9 rs505151 polymorphisms and the risk of ischemic stroke remains unclear and inconclusive. Therefore, this first meta-analysis was carried out to clarify the presumed influence of genetic polymorphisms on ischemic stroke, by analyzing the complete coverage of all relevant studies. All eligible case-control and cohort studies that met the search term were retrieved in multiple scientific databases. Data of interest such as demographic data and genotyping methods were extracted from each study, and the meta-analysis was performed using RevMan 5.3 and Metafor R 3.2.1. The pooled odd ratios (ORs) and 95% confidence intervals (CIs) were calculated using both fixed- and random-effect models. A total of seven case-control studies encompassing 1897 ischemic stroke cases and 2119 healthy controls were critically evaluated. Pooled results from the genetic models indicated that OLR1 rs11053646 dominant (OR=1.33. 95%CI:1.11-1.58) and co-dominant models (OR=1.24, 95%CI:1.02-1.51) were significantly associated with ischemic stroke. For PCSK9 rs505151 polymorphism, the OR of co-dominant model (OR=1.36, 95%CI:1.01-1.58) was found to be higher among ischemic stroke patients. In conclusion, the current meta-analysis highlighted that variant allele of OLR1 rs11053646 G>C and PCSK9 rs505151 A>G may contribute to the susceptibility risk of ischemic stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilised Next Generation Sequencing (NGS) to screen the coding sequence, exon-intron boundaries and UTRs of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which 9 were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The purpose of this study was threefold. First, it was to determine the relationship between serum vitamin profiles and ischemic stroke. The second purpose was to investigate the association of methylenetetrahydrofolate reductase (MTHFR), endothelial nitric oxide synthase (eNOS), angiotensin converting enzyme (ACE), and apolipoprotein-E (ApoE) gene polymorphisms with ischemic stroke and further correlate with serum vitamin profiles among ischemic stroke patients. The third purpose of the study was to highlight the interaction of MTHFR and eNOS haplotypes with serum vitamin profiles and ischemic stroke risks. Methods Polymorphisms of these genes were analyzed in age-, sex-, and ethnicity-matched case–controls (n = 594); serum vitamin profiles were determined using immunoassays. Results The MTHFR 677C>T, 1298A>C, eNOS intron 4a/b, and ApoE polymorphisms were significantly associated with the increased risk of ischemic stroke. Elevated serum homocysteine and vitamin B12 levels were associated with MTHFR 677C>T and eNOS intron 4a/b polymorphisms. The ApoE and eNOS −786T>C polymorphisms were associated with increased serum vitamin B12 levels. However, none of the polymorphisms influenced serum folate levels except for the MTHFR 1298A>C. Different patterns of MTHFR and eNOS haplotypes tend to affect serum vitamin profiles to different degrees, which contribute to either different susceptibility risk or protective effect on ischemic stroke. Overall, increased levels of serum homocysteine and vitamin B12 levels were associated with higher risk of ischemic stroke in the investigated population. Conclusions The present study suggests that the genotypes and haplotypes of MTHFR 677C>T and eNOS intron 4a/b polymorphisms are potential serum biomarkers in the pathophysiological processes of ischemic stroke, by modulating homocysteine and vitamin B12 levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safety, efficacy and enhanced transgene expression are the primary concerns while using any vector for gene therapy. One of the widely used vectors in clinical. trials is adenovirus which provides a safe way to deliver the therapeutic gene. However, adenovirus has poor transduction efficiency in vivo since most tumor cells express low coxsackie and adenovirus receptors. Similarly transgene expression remains low, possibly because of the chromatization of adenoviral genome upon infection in eukaryotic cells, an effect mediated by histone deacetylases (HDACs). Using a recombinant adenovirus (Ad-HSVtk) carrying the herpes simplex thymidine kinase (HSVtk) and GFP genes we demonstrate that HDAC inhibitor valproic acid can bring about an increase in CAR expression on host cells and thereby enhanced Ad-HSVtk infectivity. It also resulted in an increase in transgene (HSVtk and GFP) expression. This, in turn, resulted in increased cell kill of HNSCC cells, following ganciclovir treatment in vitro as well as in vivo in a xenograft nude mouse model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals in distress emit audible vocalizations to either warn or inform conspecifics. The Indian short-nosed fruit bat, Cynopterus sphinx, emits distress calls soon after becoming entangled in mist nets, which appear to attract conspecifics. Phase I of these distress calls is longer and louder, and includes a secondary peak, compared to phase II. Activity-dependent expression of egr-1 was examined in free-ranging C. sphinx following the emissions and responses to a distress call. We found that the level of expression of egr-1 was higher in bats that emitted a distress call, in adults that responded, and in pups than in silent bats. Up-regulated cDNA was amplified to identify the target gene (TOE1) of the protein Egr-1. The observed expression pattern Toe1 was similar to that of egr-1. These findings suggest that the neuronal activity related to recognition of a distress call and an auditory feedback mechanism induces the expression of Egr-1. Co-expression of egr-1 with Toe1 may play a role in initial triggering of the genetic mechanism that could be involved in the consolidation or stabilization of distress call memories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleotide sequence of a 714 bp BamHI-EcoRI fragment of cucumber chloroplast DNA was determined. The fragment contained a gene for tRNA(Leu) together with its flanking regions. The trnL(CAA) gene sequence is about 99% in similarity to broad bean, cauliflower, maize, spinach and tobacco corresponding genes. The relative expression level of the gene was determined by Northern (tRNA) gel blot and Northern (total cellular RNA) slot-blot analyses using the trnL gene probe in 6-day old etiolated cucumber seedlings and the seedlings that had been kept in the dark (dark-grown), treated with benzyladenine (BA) and kept in the dark (BA-treated dark-grown), illuminated (light-grown), and treated with BA and illuminated (BA-treated light-grown), for additional 4, 8 or 12 hr. The trnL transcripts and tRNA(Leu) levels in BA-treated dark-grown seedlings were 5 and 3 times higher, respectively after 4 hr BA treatment, while in the BA treated light-grown seedlings the level of trnL transcripts was only 3 times higher and had no detectable effect on mature tRNA(Leu) when compared to the time-4 hr dark-grown seedlings. However, the level of mature tRNA(Leu) did not show marked changes in the light-grown seedlings, whereas the level of trnL transcripts increases 3 times after 8 hr illumination of dark-grown seedlings. These data indicate that both light and cytokinin can signal changes in plastid tRNA gene expression. The possible regulatory mechanisms for such changes are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleotide sequence of a 714 bp BamHI-EcoRI fragment of cucumber chloroplast DNA was determined. The fragment contained a gene for tRNA(Leu) together with its flanking regions. The trnL(CAA) gene sequence is about 99% in similarity to broad bean, cauliflower, maize, spinach and tobacco corresponding genes. The relative expression level of the gene was determined by Northern (tRNA) gel blot and Northern (total cellular RNA) slot-blot analyses using the trnL gene probe in 6-day old etiolated cucumber seedlings and the seedlings that had been kept in the dark (dark-grown), treated with benzyladenine (BA) and kept in the dark (BA-treated dark-grown), illuminated (light-grown), and treated with BA and illuminated (BA- treated light-grown), for additional 4, 8 or 12 hr. The trnL transcripts and tRNA(Leu) levels in BA-treated dark-grown seedlings were 5 and 3 times higher, respectively after 4 hr BA treatment, while in the BA treated light-grown seedlings the level of trnL transcripts was only 3 times higher and had not detectable effect on mature tRNA(Leu) when compared to the time-4 hr dark-grown seedlings. However, the level of mature tRNA(Leu) did not show marked changes in the light-grown seedlings, whereas the level of trnL transcripts increases 3 times after 8 hr illumination of dark-grown seedlings. These date indicate that both light and cytokinin can signal changes in plastid tRNA gene expression. The possible regulatory mechanisms for such changes are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeted nanomedicines offer a strategy for greatly enhancing accumulation of a therapeutic within a specific tissue in animals. In this study, we report on the comparative targeting efficiency toward prostate-specific membrane antigen (PSMA) of a number of different ligands that are covalently attached by the same chemistry to a polymeric nanocarrier. The targeting ligands included a small molecule (glutamate urea), a peptide ligand, and a monoclonal antibody (J591). A hyperbranched polymer (HBP) was utilized as the nanocarrier and contained a fluorophore for tracking/analysis, whereas the pendant functional chain-ends provided a handle for ligand conjugation. Targeting efficiency of each ligand was assessed in vitro using flow cytometry and confocal microscopy to compare degree of binding and internalization of the HBPs by human prostate cancer (PCa) cell lines with different PSMA expression status (PC3-PIP (PSMA+) and PC3-FLU (PSMA−). The peptide ligand was further investigated in vivo, in which BALB/c nude mice bearing subcutaneous PC3-PIP and PC3-FLU PCa tumors were injected intravenously with the HBP-peptide conjugate and assessed by fluorescence imaging. Enhanced accumulation in the tumor tissue of PC3-PIP compared to PC3-FLU highlighted the applicability of this system as a future imaging and therapeutic delivery vehicle.