970 resultados para gene function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

cDNA corresponding to the GA4 gene of Arabidopsis thaliana L. (Heynh.) was expressed in Escherichia coli, from which cell lysates converted [14C]gibberellin (GA)9 and [14C]GA20 to radiolabeled GA4 and GA1, respectively, thereby confirming that GA4 encodes a GA 3β-hydroxylase. GA9 was the preferred substrate, with a Michaelis value of 1 μm compared with 15 μm for GA20. Hydroxylation of these GAs was regiospecific, with no indication of 2β-hydroxylation or 2,3-desaturation. The capacity of the recombinant enzyme to hydroxylate a range of other GA substrates was investigated. In general, the preferred substrates contained a polar bridge between C-4 and C-10, and 13-deoxy GAs were preferred to their 13-hydroxylated analogs. Therefore, no activity was detected using GA12-aldehyde, GA12, GA19, GA25, GA53, or GA44 as the open lactone (20-hydroxy-GA53), whereas GA15, GA24, and GA44 were hydroxylated to GA37, GA36, and GA38, respectively. The open lactone of GA15 (20-hydroxy-GA12) was hydroxylated but less efficiently than GA15. In contrast to the free acid, GA25 19,20-anhydride was 3β-hydroxylated to give GA13. 2,3-Didehydro-GA9 and GA5 were converted by recombinant GA4 to the corresponding epoxides 2,3-oxido-GA9 and GA6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cDNA sequence for CAP160, an acidic protein previously linked with cold acclimation in spinach (Spinacia oleracea L.), was characterized and found to encode a novel acidic protein of 780 amino acids having very limited homology to a pair of Arabidopsis thaliana stress-regulated proteins, rd29A and rd29B. The lack of similarity in the structural organization of the spinach and Arabidopsis genes highlights the absence of a high degree of conservation of this cold-stress gene across taxonomic boundaries. The protein has several unique motifs that may relate to its function during cold stress. Expression of the CAP160 mRNA was increased by low-temperature exposure and water stress in a manner consistent with a probable function during stresses that involve dehydration. The coding sequences for CAP160 and CAP85, another spinach cold-stress protein, were introduced into tobacco (Nicotiana tabacum) under the control of the 35S promoter using Agrobacterium tumefaciens-based transformation. Tobacco plants expressing the proteins individually or coexpressing both proteins were evaluated for relative freezing-stress tolerance. The killing temperature for 50% of the cells of the transgenic plants was not different from that of the wild-type plants. As determined by a more sensitive time/temperature kinetic study, plants expressing the spinach proteins had slightly lower levels of electrolyte leakage than wild-type plants, indicative of a small reduction of freezing-stress injury. Clearly, the heterologous expression of two cold-stress proteins had no profound influence on stress tolerance, a result that is consistent with the quantitative nature of cold-stress-tolerance traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rice (Oryza sativa L.) homeobox gene OSH1 causes morphological alterations when ectopically expressed in transgenic rice, Arabidopsis thaliana, and tobacco (Nicotiana tabacum L.) and is therefore believed to function as a morphological regulator gene. To determine the relationship between OSH1 expression and morphological alterations, we analyzed the changes in hormone levels in transgenic tobacco plants exhibiting abnormal morphology. Levels of the plant hormones indole-3-acetic acid, abscisic acid, gibberellin (GA), and cytokinin (zeatin and trans-zeatin [Z]) were measured in leaves of OSH1-transformed and wild-type tobacco. Altered plant morphology was found to correlate with changes in hormone levels. The more severe the alteration in phenotype of transgenic tobacco, the greater were the changes in endogenous hormone levels. Overall, GA1 and GA4 levels decreased and abscisic acid levels increased compared with wild-type plants. Moreover, in the transformants, Z (active form of cytokinin) levels were higher and the ratio of Z to Z riboside (inactive form) also increased. When GA3 was supplied to the shoot apex of transformants, internode extension was restored and normal leaf morphology was also partially restored. However, such GA3-treated plants still exhibited some morphological abnormalities compared with wild-type plants. Based on these data, we propose the hypothesis that OSH1 affects plant hormone metabolism either directly or indirectly and thereby causes changes in plant development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher plants express several isoforms of vacuolar and cell wall invertases (CWI), some of which are inactivated by inhibitory proteins at certain stages of plant development. We have purified an apoplasmic inhibitor (INH) of tobacco (Nicotiana tabacum) CWI to homogeneity. Based on sequences from tryptic fragments, we have isolated a full-length INH-encoding cDNA clone (Nt-inh1) via a reverse transcriptase-polymerase chain reaction. Southern-blot analysis revealed that INH is encoded by a single- or low-copy gene. Comparison with expressed sequence tag clones from Arabidopsis thaliana and Citrus unshiu indicated the presence of Nt-inh1-related proteins in other plants. The recombinant Nt-inh1-encoded protein inhibits CWI from tobacco and Chenopodium rubrum suspension-cultured cells and vacuolar invertase from tomato (Lycopersicon esculentum) fruit, whereas yeast invertase is not affected. However, only in the homologous system is the inhibition modulated by the concentration of Suc as previously shown for INH isolated from tobacco cells. Highly specific binding of INH to CWI could be shown by affinity chromatography of a total cell wall protein fraction on immobilized recombinant Nt-inh1 protein. RNA-blot analysis of relative transcript ratios for Nt-inh1 and CWI in different parts of adult tobacco plants revealed that the expression of both proteins is not always coordinate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive oxygen species cause damage to all of the major cellular constituents, including peroxidation of lipids. Previous studies have revealed that oxidative stress, including exposure to oxidation products, affects the progression of cells through the cell division cycle. This study examined the effect of linoleic acid hydroperoxide, a lipid peroxidation product, on the yeast cell cycle. Treatment with this peroxide led to accumulation of unbudded cells in asynchronous populations, together with a budding and replication delay in synchronous ones. This observed modulation of G1 progression could be distinguished from the lethal effects of the treatment and may have been due to a checkpoint mechanism, analogous to that known to be involved in effecting cell cycle arrest in response to DNA damage. By examining several mutants sensitive to linoleic acid hydroperoxide, the YNL099c open reading frame was found to be required for the arrest. This gene (designated OCA1) encodes a putative protein tyrosine phosphatase of previously unknown function. Cells lacking OCA1 did not accumulate in G1 on treatment with linoleic acid hydroperoxide, nor did they show a budding, replication, or Start delay in synchronous cultures. Although not essential for adaptation or immediate cellular survival, OCA1 was required for growth in the presence of linoleic acid hydroperoxide, thus indicating that it may function in linking growth, stress responses, and the cell cycle. Identification of OCA1 establishes cell cycle arrest as an actively regulated response to oxidative stress and will enable further elucidation of oxidative stress-responsive signaling pathways in yeast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the “ear” domain of the clathrin adaptor AP-1 γ subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Δ), the major Gga protein, accentuates growth and α-factor maturation defects in cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. Cells carrying either gga2Δ or a deletion of the AP-1 β subunit gene (apl2Δ) alone are phenotypically normal, but cells carrying both gga2Δ and apl2Δ are defective in growth, α-factor maturation, and transport of carboxypeptidase S to the vacuole. Disruption of both GGA genes and APL2 results in cells so severely compromised in growth that they form only microcolonies. Gga proteins can bind clathrin in vitro and cofractionate with clathrin-coated vesicles. Our results indicate that yeast Gga proteins play an important role in cargo-selective clathrin-mediated protein traffic from the trans-Golgi network to endosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human inducible nitric oxide synthase (hiNOS) gene is expressed in several disease states and is also important in the normal immune response. Previously, we described a cytokine-responsive enhancer between −5.2 and −6.1 kb in the 5′-flanking hiNOS promoter DNA, which contains multiple nuclear factor κβ (NF-κB) elements. Here, we describe the role of the IFN-Jak kinase-Stat (signal transducer and activator of transcription) 1 pathway for regulation of hiNOS gene transcription. In A549 human lung epithelial cells, a combination of cytokines tumor necrosis factor-α, interleukin-1β, and IFN-γ (TNF-α, IL-1β, and IFN-γ) function synergistically for induction of hiNOS transcription. Pharmacological inhibitors of Jak2 kinase inhibit cytokine-induced Stat 1 DNA-binding and hiNOS gene expression. Expression of a dominant-negative mutant Stat 1 inhibits cytokine-induced hiNOS reporter expression. Site-directed mutagenesis of a cis-acting DNA element at −5.8 kb in the hiNOS promoter identifies a bifunctional NF-κB/Stat 1 motif. In contrast, gel shift assays indicate that only Stat 1 binds to the DNA element at −5.2 kb in the hiNOS promoter. Interestingly, Stat 1 is repressive to basal and stimulated iNOS mRNA expression in 2fTGH human fibroblasts, which are refractory to iNOS induction. Overexpression of NF-κB activates hiNOS promoter–reporter expression in Stat 1 mutant fibroblasts, but not in the wild type, suggesting that Stat 1 inhibits NF-κB function in these cells. These results indicate that both Stat 1 and NF-κB are important in the regulation of hiNOS transcription by cytokines in a complex and cell type-specific manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been suggested that anergic T cells may not be only inert cells but may rather play an active role, for example by regulating immune responses. We have previously reported the existence of “anergic” IL-10-producing CD4+ T cells generated in vivo by continuous antigenic stimulation. Using a gene transfer system where the antigen recognized by such T cells is expressed in skeletal muscle by two different DNA viral vectors, we show that these cells not only remain tolerant toward their cognate antigen but also can suppress the immune response of naïve T cells against the immunogenic adenoviral proteins. Furthermore, they can completely inhibit tissue destruction that takes place as a result of an immune response. The system presented here is unique in that the T cells have been anergized in vivo, their antigen specificity and functional status are known, and the amount, form, and timing of antigen expression can be manipulated. This model will therefore permit us to carefully dissect the mechanisms by which these anergic T cells regulate the priming and/or effector function of naïve T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2−/− mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2−/− mice, we used suppressive subtractive hybridization between livers from Usf2−/− and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2−/− hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose is the preferred carbon source for most eukaryotic cells and has profound effects on many cellular functions. How cells sense glucose and transduce a signal into the cell is a fundamental, unanswered question. Here we describe evidence that two unusual glucose transporters in the yeast Saccharomyces cerevisiae serve as glucose sensors that generate an intracellular glucose signal. The Snf3p high-affinity glucose transporter appears to function as a low glucose sensor, since it is required for induction of expression of several hexose transporter (HXT) genes, encoding glucose transporters, by low levels of glucose. We have identified another apparent glucose transporter, Rgt2p, that is strikingly similar to Snf3p and is required for maximal induction of gene expression in response to high levels of glucose. This suggests that Rgt2p is a high glucose-sensing counterpart to Snf3p. We identified a dominant mutation in RGT2 that causes constitutive expression of several HXT genes, even in the absence of the inducer glucose. This same mutation introduced into SNF3 also causes glucose-independent expression of HXT genes. Thus, the Rgt2p and Snf3p glucose transporters appear to act as glucose receptors that generate an intracellular glucose signal, suggesting that glucose signaling in yeast is a receptor-mediated process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional major histocompatibility complex (MHC) class I genes encode molecules that present intracellular peptide antigens to T cells. They are ubiquitously expressed and regulated by interferon gamma. Two highly divergent human MHC class I genes, MICA and MICB, are regulated by promoter heat shock elements similar to those of HSP70 genes. MICA encodes a cell surface glycoprotein, which is not associated with beta 2-microglobulin, is conformationally stable independent of conventional class I peptide ligands, and almost exclusively expressed in gastrointestinal epithelium. Thus, this MHC class I molecule may function as an indicator of cell stress and may be recognized by a subset of gut mucosal T cells in an unusual interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term potentiation (LTP) has been shown to be impaired in mice deficient in the brain-derived neurotrophic factor (BDNF) gene, as well as in a number of other knockout animals. Despite its power the gene-targeting approach is always fraught with the danger of looking at the cumulative direct and indirect effects of the absence of a particular gene rather than its immediate function. The re-expression of a specific gene at a selective time point and at a specific site in gene-defective mutants presents a potent procedure to overcome this limitation and to evaluate the causal relationship between the absence of a particular gene and the impairment of a function in gene-defective animals. Here we demonstrate that the re-expression of the BDNF gene in the CA1 region almost completely restores the severely impaired LTP in hippocampal slices of BDNF-deficient mice. The results therefore provide strong evidence for the direct involvement of BDNF in the process of LTP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure-function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test the hypothesis that the nonrandom organization of the contents of interphase nuclei represents a compartmentalization of function, we examined the relative, spatial relationship of small nuclear ribonucleoproteins (snRNPs) and of DNase I hypersensitive chromatin (DHC) in rat pheochromocytoma cells. In controls, DHC and snRNPs colocalized as pan-nuclear speckles. During nerve growth factor-induced differentiation, both snRNPs and DHC migrated to the nuclear periphery with the migration of DHC preceding that of snRNPs, resulting in their transient separation. The formation of DHC shells temporally coincided with an up-regulation of neurofilament light chain mRNA. This indicates that the expression of this sequence may be associated with its spatial transposition to the nuclear periphery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The VHL tumor suppressor gene is inactivated in patients with von Hippel-Lindau disease and in most sporadic clear cell renal carcinomas. Although VHL protein function remains unclear, VHL does interact with the elongin BC subunits in vivo and regulates RNA polymerase II elongation activity in vitro by inhibiting formation of the elongin ABC complex. Expression of wild-type VHL in renal carcinoma cells with inactivated endogenous VHL resulted in unaltered in vitro cell growth and decreased vascular endothelial growth factor (VEGF) mRNA expression and responsiveness to serum deprivation. VEGF is highly expressed in many tumors, including VHL-associated and sporadic renal carcinomas, and it stimulates neoangiogenesis in growing solid tumors. Despite 5-fold differences in VEGF mRNA levels, VHL overexpression did not affect VEGF transcription initiation or elongation as would have been suggested by VHL-elongin association. These results suggest that VHL regulates VEGF expression at a post-transcriptional level and that VHL inactivation in target cells causes a loss of VEGF suppression, leading to formation of a vascular stroma.