918 resultados para fruit patterning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of cell wall pectins by tomato (Lycopersicon esculentum) polygalacturonase (PG) in vitro is more extensive than the degradation affecting these polymers during ripening. We examined the hydrolysis of polygalacturonic acid and cell walls by PG isozyme 2 (PG2) under conditions widely adopted in the literature (pH 4.5 and containing Na+) and under conditions approximating the apoplastic environment of tomato fruit (pH 6.0 and K+ as the predominate cation). The pH optima for PG2 in the presence of K+ were 1.5 and 0.5 units higher for the hydrolysis of polygalacturonic acid and cell walls, respectively, compared with activity in the presence of Na+. Increasing K+ concentration stimulated pectin solubilization at pH 4.5 but had little influence at pH 6.0. Pectin depolymerization by PG2 was extensive at pH values from 4.0 to 5.0 and was further enhanced at high K+ levels. Oligomers were abundant products in in vitro reactions at pH 4.0 to 5.0, decreased sharply at pH 5.5, and were negligible at pH 6.0. EDTA stimulated PG-mediated pectin solubilization at pH 6.0 but did not promote oligomer production. Ca2+ suppressed PG-mediated pectin release at pH 4.5 yet had minimal influence on the proportional recovery of oligomers. Extensive pectin breakdown in processed tomato might be explained in part by cation- and low-pH-induced stimulation of PG and other wall-associated enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum) plants were transformed with gene constructs containing a tomato alcohol dehydrogenase (ADH) cDNA (ADH 2) coupled in a sense orientation with either the constitutive cauliflower mosaic virus 35S promoter or the fruit-specific tomato polygalacturonase promoter. Ripening fruit from plants transformed with the constitutively expressed transgene(s) had a range of ADH activities; some plants had no detectable activity, whereas others had significantly higher ADH activity, up to twice that of controls. Transformed plants with fruit-specific expression of the transgene(s) also displayed a range of enhanced ADH activities in the ripening fruit, but no suppression was observed. Modified ADH levels in the ripening fruit influenced the balance between some of the aldehydes and the corresponding alcohols associated with flavor production. Hexanol and Z-3-hexenol levels were increased in fruit with increased ADH activity and reduced in fruit with low ADH activity. Concentrations of the respective aldehydes were generally unaltered. The phenotypes of modified fruit ADH activity and volatile abundance were transmitted to second-generation plants in accordance with the patterns of inheritance of the transgenes. In a preliminary taste trial, fruit with elevated ADH activity and higher levels of alcohols were identified as having a more intense “ripe fruit” flavor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway (Carum carvi L.) proceeds from geranyl diphosphate via a three-step pathway. First, geranyl diphosphate is cyclized to (+)-limonene by a monoterpene synthase. Second, this intermediate is stored in the essential oil ducts without further metabolism or is converted by limonene-6-hydroxylase to (+)-trans-carveol. Third, (+)-trans-carveol is oxidized by a dehydrogenase to (+)-carvone. To investigate the regulation of monoterpene formation in caraway, we measured the time course of limonene and carvone accumulation during fruit development and compared it with monoterpene biosynthesis from [U-14C]Suc and the changes in the activities of the three enzymes. The activities of the enzymes explain the profiles of monoterpene accumulation quite well, with limonene-6-hydroxylase playing a pivotal role in controlling the nature of the end product. In the youngest stages, when limonene-6-hydroxylase is undetectable, only limonene was accumulating in appreciable levels. The appearance of limonene-6-hydroxylase correlates closely with the onset of carvone accumulation. At later stages of fruit development, the activities of all three enzymes declined to low levels. Although this correlates closely with a decrease in monoterpene accumulation, the latter may also be the result of competition with other pathways for substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ripening-associated pectin disassembly in melon is characterized by a decrease in molecular mass and an increase in the solubilization of polyuronide, modifications that in other fruit have been attributed to the activity of polygalacturonase (PG). Although it has been reported that PG activity is absent during melon fruit ripening, a mechanism for PG-independent pectin disassembly has not been positively identified. Here we provide evidence that pectin disassembly in melon (Cucumis melo) may be PG mediated. Three melon cDNA clones with significant homology to other cloned PGs were isolated from the rapidly ripening cultivar Charentais (C. melo cv Reticulatus F1 Alpha) and were expressed at high levels during fruit ripening. The expression pattern correlated temporally with an increase in pectin-degrading activity and a decrease in the molecular mass of cell wall pectins, suggesting that these genes encode functional PGs. MPG1 and MPG2 were closely related to peach fruit and tomato abscission zone PGs, and MPG3 was closely related to tomato fruit PG. MPG1, the most abundant melon PG mRNA, was expressed in Aspergillus oryzae. The culture filtrate exponentially decreased the viscosity of a pectin solution and catalyzed the linear release of reducing groups, suggesting that MPG1 encodes an endo-PG with the potential to depolymerize melon fruit cell wall pectin. Because MPG1 belongs to a group of PGs divergent from the well-characterized tomato fruit PG, this supports the involvement of a second class of PGs in fruit ripening-associated pectin disassembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-Galactosidases (EC 3.2.1.23) constitute a widespread family of enzymes characterized by their ability to hydrolyze terminal, nonreducing β-d-galactosyl residues from β-d-galactosides. Several β-galactosidases, sometimes referred to as exo-galactanases, have been purified from plants and shown to possess in vitro activity against extracted cell wall material via the release of galactose from wall polymers containing β(1→4)-d-galactan. Although β-galactosidase II, a protein present in tomato (Lycopersicon esculentum Mill.) fruit during ripening and capable of degrading tomato fruit galactan, has been purified, cloning of the corresponding gene has been elusive. We report here the cloning of a cDNA, pTomβgal 4 (accession no. AF020390), corresponding to β-galactosidase II, and show that its corresponding gene is expressed during fruit ripening. Northern-blot analysis revealed that the β-galactosidase II gene transcript was detectable at the breaker stage of ripeness, maximum at the turning stage, and present at decreasing levels during the later stages of normal tomato fruit ripening. At the turning stage of ripeness, the transcript was present in all fruit tissues and was highest in the outermost tissues (including the peel). Confirmation that pTomβgal 4 codes for β-galactosidase II was derived from matching protein and deduced amino acid sequences. Furthermore, analysis of the deduced amino acid sequence of pTomβgal 4 suggested a high probability for secretion based on the presence of a hydrophobic leader sequence, a leader-sequence cleavage site, and three possible N-glycosylation sites. The predicted molecular mass and isoelectric point of the pTomβgal 4-encoded mature protein were similar to those reported for the purified β-galactosidase II protein from tomato fruit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During ripening of grape (Vitis labruscana L. cv Concord) berries, abundance of several proteins increased, coordinately with hexoses, to the extent that these became the predominant proteins in the ovary. These proteins have been identified by N-terminal amino acid-sequence analysis and/or function to be a thaumatin-like protein (grape osmotin), a lipid-transfer protein, and a basic and an acidic chitinase. The basic chitinase and grape osmotin exhibited activities against the principal grape fungal pathogens Guignardia bidwellii and Botrytis cinerea based on in vitro growth assays. The growth-inhibiting activity of the antifungal proteins was substantial at levels comparable to those that accumulate in the ripening fruit, and these activities were enhanced by as much as 70% in the presence of 1 m glucose, a physiological hexose concentration in berries. The simultaneous accumulation of the antifungal proteins and sugars during berry ripening was correlated with the characteristic development of pathogen resistance that occurs in fruits during ripening. Taken together, accumulation of these proteins, in combination with sugars, appears to constitute a novel, developmentally regulated defense mechanism against phytopathogens in the maturing fruit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA clone encoding a putative dihydroflavonol 4-reductase gene has been isolated from a strawberry (Fragaria × ananassa cv Chandler) DNA subtractive library. Northern analysis showed that the corresponding gene is predominantly expressed in fruit, where it is first detected during elongation (green stages) and then declines and sharply increases when the initial fruit ripening events occur, at the time of initiation of anthocyanin accumulation. The transcript can be induced in unripe green fruit by removing the achenes, and this induction can be partially inhibited by treatment of de-achened fruit with naphthylacetic acid, indicating that the expression of this gene is under hormonal control. We propose that the putative dihydroflavonol 4-reductase gene in strawberry plays a main role in the biosynthesis of anthocyanin during color development at the late stages of fruit ripening; during the first stages the expression of this gene could be related to the accumulation of condensed tannins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaves are the main source of carbon for fruit maturation in most species. However, in plants seeing contrasting light conditions such as some spring plants, carbon fixed during the spring could be used to support fruit development in the summer, when photosynthetic rates are low. We monitored carbohydrate content in the rhizome (a perennating organ) and the aboveground stem of trillium (Trillium erectum) over the entire growing season (May–November). At the beginning of the fruiting stage, stems carrying a developing fruit were harvested, their leaves were removed, and the leafless stems were maintained in aqueous solution under controlled conditions up to full fruit maturation. These experiments showed that stem carbohydrate content was sufficient to support fruit development in the absence of leaves and rhizome. This is the first reported case, to our knowledge, of complete fruit development sustained only by a temporary carbohydrate reservoir. This carbohydrate accumulation in the stem during the spring enables the plant to make better use of the high irradiances occurring at that time. Many other species might establish short-term carbohydrate reservoirs in response to seasonal changes in growing conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polygalacturonase (PG) is the major enzyme responsible for pectin disassembly in ripening fruit. Despite extensive research on the factors regulating PG gene expression in fruit, there is conflicting evidence regarding the role of ethylene in mediating its expression. Transgenic tomato (Lycopersicon esculentum) fruits in which endogenous ethylene production was suppressed by the expression of an antisense 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene were used to re-examine the role of ethylene in regulating the accumulation of PG mRNA, enzyme activity, and protein during fruit ripening. Treatment of transgenic antisense ACC synthase mature green fruit with ethylene at concentrations as low as 0.1 to 1 μL/L for 24 h induced PG mRNA accumulation, and this accumulation was higher at concentrations of ethylene up to 100 μL/L. Neither PG enzyme activity nor PG protein accumulated during this 24-h period of ethylene treatment, indicating that translation lags at least 24 h behind the accumulation of PG mRNA, even at high ethylene concentrations. When examined at concentrations of 10 μL/L, PG mRNA accumulated within 6 h of ethylene treatment, indicating that the PG gene responds rapidly to ethylene. Treatment of transgenic tomato fruit with a low level of ethylene (0.1 μL/L) for up to 6 d induced levels of PG mRNA, enzyme activity, and protein after 6 d, which were comparable to levels observed in ripening wild-type fruit. A similar level of internal ethylene (0.15 μL/L) was measured in transgenic antisense ACC synthase fruit that were held for 28 d after harvest. In these fruit PG mRNA, enzyme activity, and protein were detected. Collectively, these results suggest that PG mRNA accumulation is ethylene regulated, and that the low threshold levels of ethylene required to promote PG mRNA accumulation may be exceeded, even in transgenic antisense ACC synthase tomato fruit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated the assembly of two-dimensional patterns of functional antibodies on a surface. In particular, we have selectively adsorbed micrometer-scale regions of biotinylated immunoglobulin that exhibit specific antigen binding after adsorption. The advantage of this technique is its potential adaptability to adsorbing arbitrary proteins in tightly packed monolayers while retaining functionality. The procedure begins with the formation of a self-assembled monolayer of n-octadecyltrimethoxysilane (OTMS) on a silicon dioxide surface. This monolayer can then be selectively removed by UV photolithography. Under appropriate solution conditions, the OTMS regions will adsorb a monolayer of bovine serum albumin (BSA), while the silicon dioxide regions where the OTMS has been removed by UV light will adsorb less than 2% of a monolayer, thus creating high contrast patterned adsorption of BSA. The attachment of the molecule biotin to the BSA allows the pattern to be replicated in a layer of streptavidin, which bonds to the biotinylated BSA and in turn will bond an additional layer of an arbitrary biotinylated protein. In our test case, functionality of the biotinylated goat antibodies raised against mouse immunoglobulin was demonstrated by the specific binding of fluorescently labeled mouse IgG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hox family of proteins plays a central role in establishing the body plan of a wide range of metazoan organisms. Each member of this family of transcriptional regulators has a distinct functional specificity, yet they bind to similar DNA target sequences through their conserved homeodomain. The mechanisms whereby Hox proteins achieve their diverse specificities in vivo remain undefined. Using the opposing effects of Hoxa-4 and Hoxc-8 in vertebral patterning, we demonstrate by replacing the homeodomain of Hoxa-4 with that of Hoxc-8 that the functional specificity of Hoxa-4 does not track with the homeodomain. These observations provide evidence that other regions of Hox proteins play an important role in mediating functional specificity during mammalian embryogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The body musculature of higher vertebrates is composed of the epaxial muscles, associated with the vertebral column, and of the hypaxial muscles of the limbs and ventro-lateral body wall. Both sets of muscles arise from different cell populations within the dermomyotomal component of the somite. Myogenesis first occurs in the medial somitic cells that will form the epaxial muscles and starts with a significant delay in cells derived from the lateral somitic moiety that migrate to yield the hypaxial muscles. The newly formed somite is mostly composed of unspecified cells, and the determination of somitic compartments toward specific lineages is controlled by environmental cues. In this report, we show that determinant signals for lateral somite specification are provided by the lateral plate. They result in a blockade of the myogenic program, which maintains the lateral somitic cells as undifferentiated muscle progenitors expressing the Pax-3 gene, and represses the activation of the MyoD family genes. In vivo, this mechanism could account for the delay observed in the onset of myogenesis between muscles of the epaxial and hypaxial domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust and reproducible metallized nano/microstructured surfaces of polymeric surfaces have been successfully prepared by direct laser interference patterning (DLIP) of commercial polymeric films followed by sputtering of metallic thin films. The SERS spectra for 2-thioaniline adsorbed on a structured polycarbonate surfaces covered with a gold or platinum film showed a ca. three order of magnitude enhancement over a flat surface with the same metal film. The method here reported is suitable for mass production of substrates for SERS since large areas (several cm2) can be structured in ca. 1–5 s.