997 resultados para freshwater ecosystem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mesocosm experiment was conducted to quantify the relationships between the presence and body size of two burrowing heart urchins (Brissopsis lyrifera and Echinocardium cordatum) and rates of sediment nutrient flux. Furthermore, the impact of seawater acidification on these relationships was determined during this 40-day exposure experiment. Using carbon dioxide (CO2) gas, seawater was acidified to pHNBS 7.6, 7.2 or 6.8. Control treatments were maintained in natural seawater (pH8.0). Under normocapnic conditions, burrowing urchins were seen to reduce the sediment uptake of nitrite or nitrate whilst enhancing the release of silicate and phosphate. In acidified (hypercapnic) treatments, the biological control of biogeochemical cycles by urchins was significantly affected, probably through the combined impacts of high CO2 on nitrifying bacteria, benthic algae and urchin behaviour. This study highlights the importance of considering biological interactions when predicting the consequences of seawater acidification on ecosystem function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a “wasp-waist” ecosystem, an intermediate trophic level is expected to control the abundance of predators through a bottom-up interaction and the abundance of prey through a top-down interaction. Previous studies suggest that the North Sea is mainly governed by bottom-up interactions driven by climate perturbations. However, few studies have investigated the importance of the intermediate trophic level occupied by small pelagic fishes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Warming of the global climate is now unequivocal and its impact on Earth’ functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although recent studies suggest that climate change may substantially accelerate the rate of species loss in the biosphere, only a few studies have focused on the potential consequences of a spatial reorganization of biodiversity with global warming. Here, we show a pronounced latitudinal increase in phytoplanktonic and zooplanktonic biodiversity in the extratropical North Atlantic Ocean in recent decades. We also show that this rise in biodiversity paralleled a decrease in the mean size of zooplanktonic copepods and that the reorganization of the planktonic ecosystem toward dominance by smaller organisms may influence the networks in which carbon flows, with negative effects on the downward biological carbon pump and demersal Atlantic cod (Gadus morhua). Our study suggests that, contrary to the usual interpretation of increasing biodiversity being a positive emergent property promoting the stability/resilience of ecosystems, the parallel decrease in sizes of planktonic organisms could be viewed in the North Atlantic as reducing some of the services provided by marine ecosystems to humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the collective failure to achieve the Convention on Biological Diversity's (CBD's) 2010 target to substantially reduce biodiversity losses, the CBD adopted a plan composed of five strategic goals and 20 “SMART” (Specific, Measurable, Ambitious, Realistic, and Time-bound) targets, to be achieved by 2020. Here, an interdisciplinary group of scientists from DIVERSITAS – an international program that focuses on biodiversity science – evaluates these targets and considers the implications of an ecosystem-services-based approach for their implementation. We describe the functional differences between the targets corresponding to distinct strategic goals and identify the interdependency between targets. We then discuss the implications for supporting research and target indicators, and make several specific suggestions for target implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical distribution of decapod larvae off the northwest Portuguese coast was analysed in relation to associated environmental conditions from sampling during a 69 h period around a current meter mooring located on the shelf, approximately 21 km off the coast. Plankton samples were collected every 2 h at the surface with a neuston net and through the water column with a Longhurst Hardy Plankton Recorder (Pro-LHPR), allowing a very detailed resolution of larval vertical distribution. Environmental data (temperature, salinity, and chlorophyll a) were obtained every hour. To investigate the horizontal distribution of decapod larvae in relation to the coast, a plankton-sampling grid was carried out before the 69 h fixed station. Larvae of shelf decapod species were widely distributed over the shelf, while those of inshore species were found much closer to the coast. Decapod larvae (zoeae and megalopae) showed clear diel vertical migrations, only appearing in the upper 20 m at night, a migration that did not appear to be affected by physical conditions in the water column. Larval densities were highly variable, 0.01 to 215 ind. m super(-3) for zoeae and 0 to 93 ind. m super(-3) for megalopae, the zoeae being generally more abundant. The results indicated that during the day larvae accumulate very close to the bottom. The diel vertical migration behaviour is discussed as one of the contributing mechanisms for larval retention over the shelf, even with offshore transport conditions promoted by coastal upwelling, and is hence of major relevance for the recruitment success of decapod species that inhabit inshore and shelf zones of coastal upwelling systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While documentation of climate effects on marine ecosystems has a long history, the underlying processes have often been elusive. In this paper we review some of the ecosystem responses to climate variability and discuss the possible mechanisms through which climate acts. Effects of climatological and oceanographic variables, such as temperature, sea ice, turbulence, and advection, on marine organisms are discussed in terms of their influence on growth, distribution, reproduction, activity rates, recruitment and mortality. Organisms tend to be limited to specific thermal ranges with experimental findings showing that sufficient oxygen supply by ventilation and circulation only occurs within these ranges. Indirect effects of climate forcing through effects on the food web are also discussed. Research and data needs required to improve our knowledge of the processes linking climate to ecosystem changes are presented along with our assessment of our ability to predict ecosystem responses to future climate change scenarios. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO). Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (~60 years) is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts) over multidecadal scales and influences the fortunes of various fisheries over many centuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removal of large predatory fishes from marine ecosystems has resulted in persistent ecosystem shifts, with collapsed predator populations and super-abundant prey populations. One explanation for these shifts is reversals of predator–prey roles that generate internal feedbacks in the ecosystems. Pelagic forage fish are often predators and competitors to the young life stages of their larger fish predators. I show that cod recruitment in the North Sea has been negatively related to the spawning-stock biomass of herring for the last 44 years. Herring, together with the abundance of Calanus finmarchicus, the major food for cod larvae, were the main predictors of cod recruitment. These predictors were of equivalent importance, worked additively, and explained different parts of the dynamics in cod recruitment. I suggest that intensive harvesting of cod has released herring from predator control, and that a large population of herring suppresses cod recruitment through predation on eggs and larvae. This feedback mechanism can promote alternative stable states and therefore cause hysteresis to occur under changing conditions; however, harvesting of herring might at present prevent a shift in the ecosystem to a herring-dominated state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overfishing of large-bodied benthic fishes and their subsequent population collapses on the Scotian Shelf of Canada’s east coast1, 2 and elsewhere3, 4 resulted in restructuring of entire food webs now dominated by planktivorous, forage fish species and macroinvertebrates. Despite the imposition of strict management measures in force since the early 1990s, the Scotian Shelf ecosystem has not reverted back to its former structure. Here we provide evidence of the transient nature of this ecosystem and its current return path towards benthic fish species domination. The prolonged duration of the altered food web, and its current recovery, was and is being governed by the oscillatory, runaway consumption dynamics of the forage fish complex. These erupting forage species, which reached biomass levels 900% greater than those prevalent during the pre-collapse years of large benthic predators, are now in decline, having outstripped their zooplankton food supply. This dampening, and the associated reduction in the intensity of predation, was accompanied by lagged increases in species abundances at both lower and higher trophic levels, first witnessed in zooplankton and then in large-bodied predators, all consistent with a return towards the earlier ecosystem structure. We conclude that the reversibility of perturbed ecosystems can occur and that this bodes well for other collapsed fisheries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of variables involved in the monitoring of an ecosystem can be high and often one of the first stages in the analysis is to reduce the number of variables. We describe a method developed for geological purposes, using the information theory, that enables selection of the most relevant variables. This technique also allows the examination of the asymmetrical relationships between variables. Applied to a set of physical and biological variables (plankton assemblages in four areas of the North Sea), the method shows that biological variables are more informative than physical variables although the controlling factors are mainly physical (sea surface temperature in winter and spring). Among biological variables, diversity measures and warm-water species assemblages are informative for the state of the North Sea pelagic ecosystems while among physical variables sea surface temperature in late winter and early spring are highly informative. Although often used in bioclimatology, the utilisation of the North Atlantic Oscillation (NAO) index does not seem to provide a lot of information. The method reveals that only the extreme states of this index has an influence on North Sea pelagic ecosystems. The substantial and persistent changes that were detected in the dynamic regime of the North Sea ecosystems and called regime shift are detected by the method and corresponds to the timing of other shifts described in the literature for some European Systems such as the Baltic and the Mediterranean Sea when both physical and biological variables are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The average spatial distribution and annual abundance cycle are described for the copepod Temora longicornis from samples collected on broadscale surveys (1977-2006) and along continuous plankton recorder transects (1961-2006) of the US Northeast continental shelf ecosystem. After its annual low in winter, T. longicornis abundance begins to increase in coastal waters with the northern progression of spring conditions. Annual maximum shelf concentrations were found in the more southern inshore waters of the region during the summer months. Abundance throughout most of the ecosystem increased sharply in the early 1990s and remained high through 2001. During this period, the copepod became more numerous and widespread in offshore shelf waters. Abundance declined to approximately average levels in 2002 for the remainder of the time series, but its extended offshore range remained intact. Correlation analysis found that the copepods interannual abundance variability had a significant negative relationship with surface salinity anomalies throughout the ecosystem, with higher correlations found in the northernmost subareas. Temora longicornis abundance in the ecosystem's southernmost subarea (Middle Atlantic Bight) did not increase in the 1990s and was found to be negatively correlated to surface temperature, indicating that continued global warming could adversely impact the copepods annual abundance cycle in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current climate change and overfishing are affecting the productivity and structure of marine ecosystems. This situation is unprecedented for the marine biosphere and it is essential to understand the mechanisms and pathways by which ecosystems respond. We report that climate change and overfishing are likely to be responsible for a rapid restructuring of a highly productive marine ecosystem with effects throughout the pelagos and the benthos. In the mid-1980s, climate change, consequent modifications in the North Sea plankton, and fishing, all reduced North Sea cod recruitment. In this region, production of many benthic species respond positively and immediately to temperature. Analysis of a long-term, spatially extensive biological (plankton and cod) and physical (sea surface temperature) dataset suggests that synchronous changes in cod numbers and sea temperature have established an extensive trophic cascade favoring lower trophic level groups over economic fisheries. A proliferation of jellyfish that we detect may signal the climax of these changes. This modified North Sea ecology may provide a clear indication of the synergistic consequences of coincident climate change and overfishing. The extent of the ecosystem restructuring that has occurred in the North Sea suggests we are unlikely to reverse current climate and human-induced effects through ecosystem resource management in the short term. Rather, we should understand and adapt to new ecological regimes. This implies that fisheries management policies will have to be fully integrated with the ecological consequences of climate change to prevent a similar collapse in an exploited marine ecosystem elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent increase in sea temperature has established a new ecosystem dynamic regime in the North Sea. Climate-induced changes in decapods have played an important role. Here, we reveal a coincident increase in the abundance of swimming crabs and lesser black-backed gull colonies in the North Sea, both in time and in space. Swimming crabs are an important food source for lesser black-backed gulls during the breeding season. Inhabiting the land, but feeding mainly at sea, lesser black-backed gulls provide a link between marine and terrestrial ecosystems, since the bottom-up influence of allochthonous nutrient input from seabirds to coastal soils can structure the terrestrial food web. We, therefore, suggest that climate-driven changes in trophic interactions in the marine food web may also have ensuing ramifications for the coastal ecology of the North Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic eutrophication affects the Mediterranean, Black, North and Baltic Seas to various extents. Responses to nutrient loading and methods of monitoring relevant indicators vary regionally, hindering interpretation of ecosystem state changes and preventing a straightforward pan-European assessment of eutrophication symptoms. Here we summarize responses to nutrient enrichment in Europe's seas, comparing existing time-series of selected pelagic (phytoplankton biomass and community composition, turbidity, N:P ratio) and benthic (macro flora and faunal communities, bottom oxygen condition) indicators based on their effectiveness in assessing eutrophication effects. Our results suggest that the Black Sea and Northern Adriatic appear to be recovering from eutrophication due to economic reorganization in the Black Sea catchment and nutrient abatement measures in the case of the Northern Adriatic. The Baltic is most strongly impacted by eutrophication due to its limited exchange and the prevalence of nutrient recycling. Eutrophication in the North Sea is primarily a coastal problem, but may be exacerbated by climatic changes. Indicator interpretation is strongly dependent on sea-specific knowledge of ecosystem characteristics, and no single indicator can be employed to adequately compare eutrophication state between European seas. Communicating eutrophication-related information to policy-makers could be facilitated through the use of consistent indicator selection and monitoring methodologies across European seas. This work is discussed in the context of the European Commission's recently published Marine Strategy Directive.