975 resultados para frequency coupling
“Deborah Numbers”, Coupling Multiple Space and Time Scales and Governing Damage Evolution to Failure
Resumo:
Two different spatial levels are involved concerning damage accumulation to eventual failure. nucleation and growth rates of microdamage nN* and V*. It is found that the trans-scale length ratio c*/L does not directly affect the process. Instead, two independent dimensionless numbers: the trans-scale one * * ( V*)including the * **5 * N c V including mesoscopic parameters only, play the key role in the process of damage accumulation to failure. The above implies that there are three time scales involved in the process: the macroscopic imposed time scale tim = /a and two meso-scopic time scales, nucleation and growth of damage, (* *4) N N t =1 n c and tV=c*/V*. Clearly, the dimensionless number De*=tV/tim refers to the ratio of microdamage growth time scale over the macroscopically imposed time scale. So, analogous to the definition of Deborah number as the ratio of relaxation time over external one in rheology. Let De be the imposed Deborah number while De represents the competition and coupling between the microdamage growth and the macroscopically imposed wave loading. In stress-wave induced tensile failure (spallation) De* < 1, this means that microdamage has enough time to grow during the macroscopic wave loading. Thus, the microdamage growth appears to be the predominate mechanism governing the failure. Moreover, the dimensionless number D* = tV/tN characterizes the ratio of two intrinsic mesoscopic time scales: growth over nucleation. Similarly let D be the “intrinsic Deborah number”. Both time scales are relevant to intrinsic relaxation rather than imposed one. Furthermore, the intrinsic Deborah number D* implies a certain characteristic damage. In particular, it is derived that D* is a proper indicator of macroscopic critical damage to damage localization, like D* ∼ (10–3~10–2) in spallation. More importantly, we found that this small intrinsic Deborah number D* indicates the energy partition of microdamage dissipation over bulk plastic work. This explains why spallation can not be formulated by macroscopic energy criterion and must be treated by multi-scale analysis.
Resumo:
A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.
Resumo:
The microgravity research, as a branch of the advanced sciences and a spe- cialized field of high technology, has been made in China since the late 1980's. The research group investigating microgravity fluid physics consisted of our col- leagues and the authors in the Institute of Mechanics of the Chinese Academy of Sciences (CAS), and we pay special attention to the floating zone convection as our first research priority. Now, the research group has expanded and is a part of the National Microgravity Laboratory of the CAS, and the research fields have been extended to include more subjects related to microgravity science. Howev- er, the floating zone convection is still an important topic that greatly holds our research interests.
目录
1.1 floating-zone crystal growth
1.2 physical model
1.3 hydrodynamic model
1.4 mathematical model
references
2. basic features of floating zone convection
2.1 equations and boundary conditions
2.2 simple solutions of fz convection
2.3 solution for two-layers flow
2.4 numerical simulation
2.5 onset of oscillation
references
3. experimental method of fz convection
3.1 ground-based simulation experiments for pr≥1
3.2 temperature and velocity oscillations
3.3 optical diagnostics of free surface oscillation
3.4 critical parameters
3.5 microgravity experiments
3.6 ground-based simulation experiment for pr《1
4. mechanism on the onset of oscillatory convection
4.1 order of magnitude analysis
4.2 mechanism of hydrothermal instability
4.3 linear stability analysis
4.4 energy instability of thermocapillary convection
4.5 unsteady numerical simulation of 2d and 3d
4.6 two bifurcation transitions in the case of small pr number fluid
4.7 two bifurcation transitions in the case of large pr number fluid
4.8 transition to turbulence
references
5. liquid bridge volume as a critical geometrical parameter
5.1 critical geometrical parameters
5.2 ground-based and mierogravity experiments
5.3 instability analyses of a large prandtl number (pr≥1)fluid
5.4 instability analyses of a small prandtl number (pr《1)fluid
5.5 numerical simulation on two bifurcation process
references
6. theoretical model of crystal growth by the floating zone method
6.1 concentration distribution in a pure diffusion process
6.2 solutal capillary convection and diffusion
6.3 coupling with phase change convection
6.4 engineering model of floating zone technique
references
7. influence of applied magnetic field on the fz convection
7.1 striation due to the time-dependent convection
7.2 applied steady magnetic field and rotational magnetic field
7.3 magnetic field design for floating half zone
7.4 influence of magnetic field on segregation
references
8. influence of residual acceleration and g-jitter
8.1 residual acceleration in microgravity experiments
8.2 order of magnitude analyses (oma)
8.3 rayleigh instability due to residual acceleration
8.4 ground-based experiment affected by a vibration field
8.5 numerical simulation of a low frequency g-jitter
8.6 numerical simulation of a high frequency g-jitter
references
Resumo:
[EN]This work analyzes the problem of community structure in real-world networks based on the synchronization of nonidentical coupled chaotic Rössler oscillators each one characterized by a defined natural frequency, and coupled according to a predefined network topology. The interaction scheme contemplates an uniformly increasing coupling force to simulate a society in which the association between the agents grows in time. To enhance the stability of the correlated states that could emerge from the synchronization process, we propose a parameterless mechanism that adapts the characteristic frequencies of coupled oscillators according to a dynamic connectivity matrix deduced from correlated data. We show that the characteristic frequency vector that results from the adaptation mechanism reveals the underlying community structure present in the network.
Resumo:
In order to analyse the possibilities of improving grid stability on island systems by local demand response mechanisms,a multi-agent simulation model is presented. To support the primary reserve, an under-frequency load shedding (UFLS)using refrigerator loads is modelled. The model represents the system at multiple scales, by recreating each refrigerator individually, and coupling the whole population of refrigerators to a model which simulates the frequency response of the energy system, allowing for cross-scale interactions. Using a simple UFLS strategy, emergent phenomena appear in the simulation. Synchronisation e ects among the individual loads were discovered, which can have strong, undesirable impacts on the system such as oscillations of loads and frequency. The phase transition from a stable to an oscillating system is discussed.