985 resultados para form-focused instruction
Resumo:
OBJECTIVE: Despite recent increases in the volume of research in professional rugby union, there is little consensus on the epidemiology of injury in adolescent players. We undertook a systematic review to determine the incidence, severity, and nature of injury in adolescent rugby union players.
DATA SOURCES: In April 2009, we performed a computerized literature search on PubMed, Embase, and Cochrane Controlled Trials Register (via Ovid). Population-specific and patient-specific search terms were combined in the form of MEDLINE subject headings and key words (wound$ and injur$, rugby, adolescent$). These were supplemented with related-citation searches on PubMed and bibliographic tracking of primary and review articles.
STUDY SELECTION: Prospective epidemiologic studies in adolescent rugby union players.
DATA SYNTHESIS: A total of 15 studies were included, and the data were analyzed descriptively. Two independent reviewers extracted key study characteristics regarding the incidence, severity, and nature of injuries and the methodologic design.
CONCLUSIONS: Wide variations existed in the injury definitions and data collection procedures. The incidence of injury necessitating medical attention varied with the definition, from 27.5 to 129.8 injuries per 1000 match hours. The incidence of time-loss injury (>7 days) ranged from 0.96 to 1.6 per 1000 playing hours and from 11.4/1000 match hours (>1 day) to 12-22/1000 match hours (missed games). The highest incidence of concussion was 3.3/1000 playing hours. No catastrophic injuries were reported. The head and neck, upper limb, and lower limb were all common sites of injury, and trends were noted toward greater time loss due to upper limb fractures or dislocations and knee ligament injuries. Increasing age, the early part of the playing season, and the tackle situation were most closely associated with injury. Future injury-surveillance studies in rugby union must follow consensus guidelines to facilitate interstudy comparisons and provide further clarification as to where injury-prevention strategies should be focused.
Resumo:
The concept of a body-to-body network, where smart communicating devices carried or worn by a person are used to form a wireless network with devices situated on other nearby persons. New innovations in this area will see the form factor of smart devices being modified, so that they may be worn on the human body or integrated into clothing, in the process creating a new generation of smart people. Applications of body-to-body networking will extend well beyond the support of cellular and Wi-Fi networks. They will also be used in short-range covert military applications, first responder applications, team sports and used to interconnect body area networks (BAN). Security will be a major issue as routing between multiple nodes will increase the risk of unauthorized access and compromise sensitive data. This will add complexity to the medium access layer (MAC) and network management. Antennas designed to operate in body centric communications systems may be broadly categorized as on- or off-body radiators, according to their radiation pattern characteristics when mounted on the human body.
Resumo:
The application of microbeams is providing new insights into the actions of radiation at the cell and tissue levels. So far, this has been achieved exclusively through the use of collimated charged particles. One alternative is to use ultrasoft X rays, focused by X-ray diffractive optics. We have developed a unique facility that uses 0.2-0.8-mm-diameter zone plates to focus ultrasoft X rays to a beam of less than 1 mum diameter. The zone plate images characteristic K-shell X rays of carbon or aluminum, generated by focusing a beam of 5-10 keV electrons onto the appropriate target. By reflecting the X rays off a grazing-incidence mirror, the contaminating bremsstrahlung radiation is reduced to 2%. The focused X rays are then aimed at selected subcellular targets using rapid automated cell-finding and alignment procedures; up to 3000 cells per hour can be irradiated individually using this arrangement. (C) 2001 by Radiation Research Society.