915 resultados para fertilizers injection
Resumo:
We perform characterization of the pulse shape and noise properties of quantum dot passively mode-locked lasers (PMLLs). We propose a novel method to determine the RF linewidth and timing jitter, applicable to high repetition rate PMLLs, through the dependence of modal linewidth on the mode number. Complex electric field measurements show asymmetric pulses with parabolic phase close to threshold, with the appearance of waveform instabilities at higher currents. We demonstrate that the waveform instabilities can be overcome through optical injection-locking to the continues wave (CW) master laser, leading to time-bandwidth product (TBP) improvement, spectral narrowing, and spectral tunability. We discuss the benefits of single- and dual-tone master sources and demonstrate that dual-tone optical injection can additionally improve the noise properties of the slave laser with RF linewidth reduction below instrument limits (1 kHz) and integrated timing jitter values below 300 fs. Dual-tone injection allowed slave laser repetition rate control over a 25 MHz range with reduction of all modal optical linewidths to the master source linewidth, demonstrating phase-locking of all slave modes and coherence improvement.
Resumo:
Quantum-dot mode-locked lasers are injection-locked by coherent two-tone master sources. Spectral tuning, significantly improved time-bandwidth product, and low jitter are demonstrated without deterioration of the pulse properties.
Resumo:
We investigate numerically and experimentally the properties of a passively mode locked quantum dot semiconductor laser under the influence of cw optical injection. We demonstrate that the waveform instability at high pumping for these devices can be overcome when one mode of the device is locked to the injected master laser and additionally show spectral narrowing and tunability. Experimental and numerical analyses demonstrate that the stable locking boundaries are similar to these obtained for optical injection in CW lasers. © 2010 American Institute of Physics.
Resumo:
An injection locking-based pump recovery system for phase-sensitive amplified links, capable of handling 40 dB effective span loss, is demonstrated. Measurements with 10 GBd DQPSK signals show penalty-free recovery of a pump wave, phase modulated with two sinusoidal RF-tones at 0.1 GHz and 0.3 GHz, with 64 dB amplification. The operating power limit for the pump recovery system is experimentally investigated and is governed by the noise transfer and phase modulation transfer characteristics of the injection-locked laser. The corresponding link penalties are explained and quantified. This system enables, for the first time, WDM compatible phase-sensitive amplified links over significant lengths. © 2013 Optical Society of America.
Resumo:
An injection-locked laser based pilot carrier enhancement technique is proposed for self-coherent OFDM. An improvement of 2.2 dB is observed when compared to Fabry-Perot filter based self-coherent OFDM. © 2012 OSA.
Resumo:
A synchronization scheme for a two-channel phase sensitive amplifier is implemented based on the injection-locking of single InP quantum-dash mode-locked laser. Error free performance with penalty <1 dB is demonstrated for both channels. © 2011 Optical Society of America.
Resumo:
An injection-locking-based pump recovery system for phase-sensitively amplified links is proposed and studied experimentally. Measurements with 10 Gbaud DQPSK signals show penalty-free recovery of 0.8 GHz FWHM bandwidth pump with 63 dB overall amplification. © 2012 OSA.
Resumo:
VSC converters are becoming more prevalent for HVDC applications. Two circuits are commercially available at present, a traditional six-switch, PWM inverter, implemented using series connected IGBTs - ABBs HVDC Light®, and the other a modular multi-level converter (MMC) - Siemens HVDC-PLUS. This paper presents an alternative MMC topology, which utilises a novel current injection technique, and exhibits several desirable characteristics.
Resumo:
A single-stage, three-phase AC-to-DC converter topology is proposed for high-frequency power supply applications. The principal features of the circuit include continuous current operation of the three AC input inductors, inherent shaping of the input currents, resulting in high power factor, a transformer isolated output, and only two active devices are required, both soft-switched. Resonant conversion techniques are used, and a high power factor is achieved by injecting high-frequency currents into the three-phase rectifier, producing a high frequency modulation of the rectifier input voltages. The current injection principle is explained and the system operation is confirmed by a combination of simulation and experimental results.
Resumo:
We present the dynamics of quantum-dot passively mode-locked semiconductor lasers under optical injection. We discuss the benefits of various configurations of the master source including single, dual, and multiple coherent frequency sources. In particular, we demonstrate that optical injection can improve the properties of the slave laser in terms of time-bandwidth product, optical linewidth, and timing jitter.
Resumo:
With the rebirth of coherent detection, various algorithms have come forth to alleviate phase noise, one of the main impairments for coherent receivers. These algorithms provide stable compensation, however they limit the DSP. With this key issue in mind, Fabry Perot filter based self coherent optical OFDM was analyzed which does not require phase noise compensation reducing the complexity in DSP at low OSNR. However, the performance of such a receiver is limited due to ASE noise at the carrier wavelength, especially since an optical amplifier is typically employed with the filter to ensure sufficient carrier power. Subsequently, the use of an injection-locked laser (ILL) to retrieve the frequency and phase information from the extracted carrier without the use of an amplifier was recently proposed. In ILL based system, an optical carrier is sent along with the OFDM signal in the transmitter. At the receiver, the carrier is extracted from the OFDM signal using a Fabry-Perot tunable filter and an ILL is used to significantly amplify the carrier and reduce intensity and phase noise. In contrast to CO-OFDM, such a system supports low-cost broad linewidth lasers and benefits with lower complexity in the DSP as no carrier frequency estimation and correction along with phase noise compensation is required.
Resumo:
A combinação da Moldagem por Injeção de pós Metálicos (Metal Injection Moulding MIM) e o Método do Retentor Espacial (Space Holder Method - SHM) é uma técnica promissora para fabricação de peças porosas de titânio com porosidade bem definida como implantes biomédicos, uma vez que permite um alto grau de automatização e redução dos custos de produção em larga escala quando comparado a técnica tradicional (SHM e usinagem a verde). Contudo a aplicação desta técnica é limitada pelo fato que há o fechamento parcial da porosidade na superfície das amostras, levando ao deterioramento da fixação do implante ao osso. E além disso, até o presente momento não foi possível atingir condições de processamento estáveis quando a quantidade de retentor espacial excede 50 vol. %. Entretanto, a literatura descreve que a melhor faixa de porosidade para implantes de titânio para coluna vertebral está entre 60 - 65 vol. %. Portanto, no presente estudo, duas abordagens foram conduzidas visando a produção de amostras altamente porosas através da combinação de MIM e SHM com o valor constante de retentor espacial de 70 vol. % e uma porosidade aberta na superfície. Na primeira abordagem, a quantidade ótima de retentor espacial foi investigada, para tal foram melhorados a homogeneização do feedstock e os parâmetros de processo com o propósito de permitir a injeção do feedstock. Na segunda abordagem, tratamento por plasma foi aplicado nas amostras antes da etapa final de sinterização. Ambas rotas resultaram na melhoria da estabilidade dimensional das amostras durante a extração térmica do ligante e sinterização, permitindo a sinterização de amostras de titânio altamente porosas sem deformação da estrutura.