977 resultados para external electric field


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that tubes of melt cast Bi-2212 used as current leads for LTS magnets can also act as efficient magnetic shields. The magnetic screening properties under an axial DC magnetic field are characterized at several temperatures below the liquid nitrogen temperature (77 K). Two main shielding properties are studied and compared with those of Bi-2223, a material that has been considered in the past for bulk magnetic shields. The first property is related to the maximum magnetic flux density that can be screened, Blim; it is defined as the applied magnetic flux density below which the field attenuation measured at the centre of the shield exceeds 1000. For a cylinder of Bi-2212 with a wall thickness of 5 mm and a large ratio of length over radius, Blim is evaluated to 1 T at T = 10 K. This value largely exceeds the Blim value measured at the same temperature on similar tubes of Bi-2223. The second shielding property that is characterized is the dependence of Blim with respect to variations of the sweep rate of the applied field, dBapp/dt. This dependence is interpreted in terms of the power law E = Ec(J/Jc)^n and allows us to determine the exponent n of this E(J) characteristics for Bi-2212. The characterization of the magnetic field relaxation involves very small values of the electric field. This gives us the opportunity to experimentally determine the E(J) law in an unexplored region of small electric fields. Combining these results with transport and AC shielding measurements, we construct a piecewise E(J) law that spans over 8 orders of magnitude of the electric field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports the results of an experimental investigation of the performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO) coated conductors. Since effective screening of the axial DC magnetic field requires the unimpeded flow of an azimuthal persistent current, we demonstrate a configuration of a screening shell made out of standard YBCO coated conductor capable to accomplish that. The screen allows the persistent current to flow in the predominantly azimuthal direction at a temperature of 77 K. The persistent screen, incorporating a single layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes, another type of screen which incorporates low critical temperature quasi-persistent joints was also built. The shielding technique we describe here appears to be especially promising for the realization of large scale high-Tc superconducting screens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present planar mesa termination structure with high k dielectric Al2O3 for high-voltage diamond Schottky barrier diode. Analysis, design, and optimization are carried out by simulations using finite element technology computer-aided design (TCAD) Sentaurus Device software. The performances of planar mesa termination structure are compared to those of conventional field plate termination structure. It is found that optimum geometry of planar mesa terminated diode requires shorter metal plate extension (1/3 of the field plate terminated diode). Consequently, planar mesa terminated diode can be designed with bigger Schottky contact to increase its current carrying capability. Breakdown performance of field plate termination structure is limited at 1480 V due to peak electric field at the corner of Schottky contact (no oxide breakdown occurs). In contrast, peak electric field in planar mesa termination structure only occurs in the field oxide such that its breakdown performance is highly dependent on the oxide material. Due to Al2O3 breakdown, planar mesa termination structure suffers premature breakdown at 1440 V. Considering no oxide breakdown occurs, planar mesa termination structure can realize higher breakdown voltage of 1751 V. Therefore, to fully realize the potential of planar mesa terminated diode, it is important to choose suitable high k dielectric material with sufficient breakdown electric field for the field oxide. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanomagnetic structures have the potential to surpass silicon's scaling limitations both as elements in hybrid CMOS logic and as novel computational elements. Magnetic force microscopy (MFM) offers a convenient characterization technique for use in the design of such nanomagnetic structures. MFM measures the magnetic field and not the sample's magnetization. As such the question of the uniqueness of the relationship between an external magnetic field and a magnetization distribution is a relevant one. To study this problem we present a simple algorithm which searches for magnetization distributions consistent with an external magnetic field and solutions to the micromagnetic equations' qualitative features. The algorithm is not computationally intensive and is found to be effective for our test cases. On the basis of our results we propose a systematic approach for interpreting MFM measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A photodiode consisting of nanopillars of thin-film silicon p-i-n on an array of vertically aligned carbon nanotubes (CNTs) with a noncontinuous cathode electrode is demonstrated. The structure exploits the intrinsic enhancement of the CNTs' electric field, which leads to reduction in the photodiode's operating voltage and response time and enhancement of optical coupling due to better light trapping, as compared with the conventional planar photodiode. These improvements translate to higher resolution and higher frame rate flat-panel imaging systems for a broad range of applications, including computed tomography and particle detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Depending on the temperature and the magnitude and orientation of an external magnetic field, the critical current density, J c , of a coated conductor can be limited either by the properties of the grain boundaries or by those of the grains. In order to ascertain what governs J c under different conditions, we have measured straight and curved tracks, patterned into RABiTS-MOD samples, while a magnetic field was swept in the plane of the films. Significantly different results were obtained at different field and temperature ranges, which we were able to attribute to J c being limited by either grain boundaries or grains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Covering a nano-patterned titanium dioxide photonic crystal (PC) within a well-oriented film of dye-doped liquid crystal (LC), a distributed feedback laser is constructed whereby the emission characteristics can be manipulated in-situ using an electric field. This hybrid organic-inorganic structure permits simultaneous selectivity of both the beam pattern and laser wavelength by electrical addressing of the LC director. In addition, laser emission is obtained both in the plane and normal to the PC. Along with experimental data, a theoretical model is presented that is based upon an approximate calculation of the band structure of this birefringent, tuneable laser device. © 2013 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Significant improvements in the spatial and temporal uniformities of device switching parameters are successfully demonstrated in Ge/TaOx bilayer-based resistive switching devices, as compared with non-Ge devices. In addition, the reported Ge/TaOx devices also show significant reductions in the operation voltages. Influence of the Ge layer on the resistive switching of TaOx-based resistive random access memory is investigated by X-ray spectroscopy and the theory of Gibbs free energy. Higher uniformity is attributed to the confinement of the filamentary switching process. The presence of a larger number of interface traps, which will create a beneficial electric field to facilitate the drift of oxygen vacancies, is believed to be responsible for the lower operation voltages in the Ge/TaO x devices. © 1980-2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this chapter, we present a review of our continuing efforts toward the development of discrete, low-dimensional nanostructured carbon-based electron emitters. Carbon nanotubes and nanofibers, herein referred to simply as CNTs, are one-dimensional carbon allotropes formed from cylindrically rolled and nested graphene sheets, have diameters between 1 and 500 nm and lengths of up to several millimeters, and are perfect candidates for field emission (FE) applications. By virtue of their extremely strong sp2 C-C bonding, intrinsic to the graphene hexagonal lattice, CNTs have demonstrated impressive chemical inertness, unprecedented thermal stabilities, significant resistance to electromigration, and exceptionally high axial current carrying capacities, even at elevated temperatures. These near ideal cold cathode electron emitters have incredibly high electric field enhancing aspect ratios combined with virtual point sources of the order of a few nanometers in size. The correct integration and judicious development of suitable FE platforms based on these extraordinary molecules is critical and will ultimately enable enhanced technologies. This chapter will review some of the more recent platforms, devices and structures developed by our group, as well as our contributions towards the development of industry-scalable technologies for ultra-high-resolution electron microscopy, portable x-ray sources, and flexible environmental lighting technologies. © 2012 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We prove theoretically and experimentally the concept of polarization holography by producing visible diffraction through radiation emitted by plasmonic nanoantennas. We show a methodology to selectively activate the nanoantenna emission by controlling the orientation of the electric field of a beam. Additionally, we demonstrate that it is possible to superpose two independent transverse nanoantennas in the same plane without producing interference in their radiated field. Hence, we introduce an alternative view to the traditional concept of holography where fringes (or diffractive units) are band-limited to half the wavelength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. © 2013 The Author(s) Published by the Royal Society. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 200V lateral insulated gate bipolar transistor (LIGBT) was successfully developed using lateral superjunction (SJ) in 0.18μm partial silicon on insulator (SOI) HV process. The results presented are based on extensive experimental measurements and numerical simulations. For an n-type lateral SJ LIGBT, the p layer in the SJ drift region helps in achieving uniform electric field distribution. Furthermore, the p-pillar contributes to the on-state current. Furthermore, the p-pillar contributes to sweep out holes during the turn-off process, thus leading to faster removal of plasma. To realize this device, one additional mask layer is required in the X-FAB 0.18μm partial SOI HV process. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ∼16.5 V, a high drain current on/off ratio of ∼105, a gate leakage current below ∼300 pA, and excellent retention characteristics for over 104 s. © 2014 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ferroelectric thin films have been intensively studied at the nanometre scale due to the application in many fields, such as non-volatile memories. Enhanced piezo-response force microscopy (E-PFM) was used to investigate the evolution of ferroelectric and ferroelastic nanodomains in a polycrystalline thin film of the simple multi-ferroic PbZr0.3Ti0.7O 3 (PZT). By applying a d.c. voltage between the atomic force microscopy (AFM) tip and the bottom substrate of the sample, we created an electric field to switch the domain orientation. Reversible switching of both ferroelectric and ferroelastic domains towards particular directions with predominantly (111) domain orientations are observed. We also showed that along with the ferroelectric/ferroelastic domain switch, there are defects that also switch. Finally, we proposed the possible explanation of this controllable defect in terms of flexoelectricity and defect pinning. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to accurately design carbon nanofibre (CN) field emitters with predictable electron emission characteristics will enable their use as electron sources in various applications such as microwave amplifiers, electron microscopy, parallel beam electron lithography and advanced Xray sources. Here, highly uniform CN arrays of controlled diameter, pitch and length were fabricated using plasma enhanced chemical vapour deposition and their individual emission characteristics and field enhancement factors were probed using scanning anode field emission mapping. For a pitch of 10 µm and a CN length of 5 µm, the directly measured enhancement factors of individual CNs was 242, which was in excellent agreement with conventional geometry estimates (240). We show here direct empirical evidence that in regular arrays of vertically aligned CNs the overall enhancement factor is reduced when the pitch between emitters is less than half the emitter height, in accordance to our electrostatic simulations. Individual emitters showed narrow Gaussian-like field enhancement distributions, in excellent agreement with electric field simulations.