982 resultados para expressing negativity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell wall peptidoglycan (PG) of Burkholderia cenocepacia, an opportunistic pathogen, has not yet been characterized. However, the B. cenocepacia genome contains homologs of genes encoding PG biosynthetic functions in other bacteria. PG biosynthesis involves the formation of the undecaprenyl-pyrophosphate-linked N-acetyl glucosamine-N-acetyl muramic acid-pentapeptide, known as lipid II, which is built on the cytosolic face of the cell membrane. Lipid II is then translocated across the membrane and its glycopeptide moiety becomes incorporated into the growing cell wall mesh; this translocation step is critical to PG synthesis. We have investigated candidate flippase homologs of the MurJ family in B. cenocepacia. Our results show that BCAL2764, herein referred to as murJBc, is indispensable for viability. Viable B. cenocepacia could only be obtained through a conditional mutagenesis strategy by placing murJBc under the control of a rhamnose-inducible promoter. Under rhamnose depletion, the conditional strain stopped growing and individual cells displayed morphological abnormalities consistent with a defect in PG synthesis. Bacterial cells unable to express MurJBc underwent cell lysis, while partial MurJBc depletion sensitized the mutant to the action of β-lactam antibiotics. Depletion of MurJBc caused accumulation of PG precursors consistent with the notion that this protein plays a role in lipid II flipping to the periplasmic compartment. Reciprocal complementation experiments of conditional murJ mutants in B. cenocepacia and Escherichia coli with plasmids expressing MurJ from each strain indicated that MurJBc and MurJEc are functional homologs. Together, our results are consistent with the notion that MurJBc is a PG lipid II flippase in B. cenocepacia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Versican is a hyaluronan-binding, extracellular chondroitin sulfate proteoglycan produced by several tumor types, including malignant melanoma, which exists as four different splice variants. The short V3 isoform contains the G1 and G3 terminal domains of versican that may potentially interact directly or indirectly with the hyaluronan receptor CD44 and the EGFR, respectively. We have previously described that overexpression of V3 in MeWo human melanoma cells markedly reduces tumor cell growth in vitro and in vivo. In this study we have investigated the signaling mechanism of V3 by silencing the expression of CD44 in control and V3-expressing melanoma cells. Suppression of CD44 had the same effects on cell proliferation and cell migration than those provoked by V3 expression, suggesting that V3 acts through a CD44-mediated mechanism. Furthermore, CD44-dependent hyaluronan internalization was blocked by V3 expression and CD44 silencing, leading to an accumulation of this glycosaminoglycan in the pericellular matrix and to changes in cell migration on hyaluronan. Furthermore, ERK1/2 and p38 activation after EGF treatment were decreased in V3-expressing cells suggesting that V3 may also interact with the EGFR through its G3 domain. The existence of a EGFR/ErbB2 receptor complex able to interact with CD44 was identified in MeWo melanoma cells. V3 overexpression resulted in a reduced interaction between EGFR/ErbB2 and CD44 in response to EGF treatment. Our results indicate that the V3 isoform of versican interferes with CD44 and the CD44-EGFR/ErbB2 interaction, altering the signaling pathways, such as ERK1/2 and p38 MAPK, that regulate cell proliferation and migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accessing chirally pure cis-diols from arenes using micro-organisms over-expressing toluene dioxygenase (TDO) is now well established, but the conversions remain low for the more toxic and volatile substrates. For such arenes, improved production has already been achieved in the presence of hydrophobic non-toxic ionic liquids (ILs) acting in the form of a reservoir for the arene substrate. Yet, the costs associated with such ILs require extensive process development to render them viable. Herein, we show that optimization of the hydrophobic IL's cationic moiety and of the IL's concentration are key to enhanced conversion yielding between a 2-5 fold yield increase in the conversion of four haloarenes (Ph-X; X = F, Cl, Br, I). Additionally, we report that hydrophilic imidazolium-based ILs offer opportunities to achieve similarly high yielding biotransformations, with further improved reaction rates (<6 h), and this at very low ILs' concentrations (0.0015 VIL/Vaq). We also demonstrate that the increased biotransformations are due to these ILs being inhibitors of cellular respiration processes and thus favoring the shunting of NADH and O2 towards the overexpressed biocatalytic process. © 2014 the Partner Organisations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Death Receptor 5 (DR5) is a pro-apoptotic cell-surface receptor that is a potential therapeutic target in cancer. Despite the potency of DR5-targeting agents in preclinical models, the translation of these effects into the clinic remains disappointing. Herein, we report an alternative approach to exploiting DR5 tumor expression using antibody-targeted, chemotherapy-loaded nanoparticles. We describe the development of an optimized polymer-based nanotherapeutic incorporating both a functionalized polyethylene glycol (PEG) layer and targeting antibodies to limit premature phagocytic clearance whilst enabling targeting of DR5-expressing tumor cells. Using the HCT116 colorectal cancer model, we show that following binding to DR5, the nanoparticles activate caspase 8, enhancing the anti-tumor activity of the camptothecin payload both in vitro and in vivo. Importantly, the combination of nanoparticle-induced DR5 clustering with camptothecin delivery overcomes resistance to DR5-induced apoptosis caused by loss of BAX or overexpression of anti-apoptotic FLIP. This novel approach may improve the clinical activity of DR5-targeted therapeutics while increasing tumor-specific delivery of systemically toxic chemotherapeutics.Molecular Therapy (2014); doi:10.1038/mt.2014.137.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage function is not restricted to the innate and adaptive immune responses, but also includes host defence, wound healing, angiogenesis and homeostatic processes. Within the spectrum of macrophage activation there are two extremes: M1 classically activated macrophages which have a pro-inflammatory phenotype, and M2 alternatively activated macrophages which are pro-angiogenic and anti-inflammatory. An important property of macrophages is their plasticity to switch from one phenotype to the other and they can be defined in their polarisation state at any point between the two extremes. In order to determine what stage of activation macrophages are in, it is essential to profile various phenotypic markers for their identification. This review describes the angiogenic role for myeloid cells: circulating monocytes, Tie-2 expressing monocytes (TEMs), myeloid-derived suppressor cells (MDSCs), tumour associated macrophages (TAMs), and neutrophils. Each cell type is discussed by phenotype, roles within angiogenesis and possible targets as a cell therapy. In addition, we also refer to our own research on myeloid angiogenic cells (MACs), outlining their ability to induce angiogenesis and their similarities to alternatively activated M2 macrophages. MACs significantly contribute to vascular repair through paracrine mechanisms as they lack the capacity to differentiate into endothelial cells. Since MACs also retain plasticity, phenotypic changes can occur according to disease states and the surrounding microenvironment. This pro-angiogenic potential of MACs could be harnessed as a novel cellular therapy for the treatment of ischaemic diseases, such as diabetic retinopathy, hind limb ischaemia and myocardial infarction; however, caution needs to be taken when MACs are delivered into an inflammatory milieu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although there is currently no evidence of emerging strains of measles virus (MV) that can resist neutralization by the anti-MV antibodies present in vaccinees, certain mutations in circulating wt MV strains appear to reduce the efficacy of these antibodies. Moreover, it has been hypothesized that resistance to neutralization by such antibodies could allow MV to persist. In this study, we use a novel in vitro system to determine the molecular basis of MV's resistance to neutralization. We find that both wild-type and laboratory strain MV variants that escape neutralization by anti-MV polyclonal sera possess multiple mutations in their H, F, and M proteins. Cytometric analysis of cells expressing viral escape mutants possessing minimal mutations and their plasmid-expressed H, F, and M proteins indicates that immune resistance is due to particular mutations that can occur in any of these three proteins that affect at distance, rather than directly, the native conformation of the MV-H globular head and hence its epitopes. A high percentage of the escape mutants contain mutations found in cases of Subacute Sclerosing Panencephalitis (SSPE) and our results could potentially shed light on the pathogenesis of this rare fatal disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing expectation that children, young people and their parents should participate in decisions that affect them. This includes decisions about their health and social care and collective or public decisions about the way in which such services are designed, delivered and evaluated. Indeed this has become a policy priority across the United Kingdom. The participation of disabled children and young people, however, has been slow to develop in the United Kingdom and concerns have been expressed about progress in this area. Drawing on the results of an Economic and Social Research Council-funded, mixed-methods study, the aim of this article is to explore the participation of disabled children and young people through a social justice lens. Participants, recruited by purposeful sampling, included 18 disabled children and young people, 77 parents and 90 professionals from one health and social care trust in Northern Ireland. There were four phases of data collection: surveys to parents and professionals, parent interviews, interviews with children and young people using creative and participatory techniques, and a focus group with professionals. Results showed that for most disabled children and young people, decision-making was firmly grounded in a family-centred model. However, when children and young people were drawn into participatory processes by adults and recognised as partners in interactions with professionals, they wanted more say and were more confident about expressing their views. Choices, information and resources were at times limited and this had a key impact on participation and the lives of these children, young people and their parents. The article concludes by exploring implications for further research and practice. The need for a two-pronged, social justice approach is recommended as a mechanism to advance the participation agenda.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P = 0.017) and multivariate Cox regression (P = 0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.

CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in β-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynaecological malignancy. Such mortality is predominantly associated with the development of an intrinsic and acquired resistance to chemotherapy, the lack of targeted therapies and the lack of biomarkers predicting therapeutic response.

Our clinical data demonstrates that increased miR-433 expression in primary high grade serous OC (HGSOCs) is significantly associated with poor PFS (n=46, p=0.024). Interestingly, the IHC analysis of two miR-433 targets: MAD2 [Furlong et al., 2012 PMID:22069160] and HDAC6 shows that low IHC levels of both proteins is also significantly associated with worse outcome (p=0.002 and 0.002 respectively; n=43). Additionally, the analysis of miR 433 in the publicly available TCGA dataset corroborates that high miR-433 is significantly correlated with worse OS for patients presenting with OC (n=558 and p=0.027). In vitro, in a panel of OC cell lines, higher miR-433 and lower MAD2 and HDAC6 levels were associated with resistance to paclitaxel.

To further investigate the role of miR-433 in the cellular response to chemotherapy, we generated an OC cell line stably expressing miR-433, or miR-control. MTT viability assays and Western Blot analyses established that miR-433 cells were more resistant to paclitaxel treatment (50nM) compared to miR-controls. Importantly, we have shown for the first time that miR 433 induced senescence, exemplified by a flattened morphology and down-regulation of phosphorylated Retinoblastoma (p-Rb), a molecular marker of senescence. Surprisingly, miR 433 induced senescence was independent from two well recognised senescent drivers: namely p53/p21 and p16. To explore this further we performed an in silico analysis of seven microRNA platforms which indicated that miR 433 potentially targets Cyclin-dependent kinase CDK6, which promotes sustained phosphorylation of Rb and thus cell cycle progression. In vitro, the overexpression of pre-miR-433 resulted in diminished CDK6 expression demonstrating a novel interaction between miR-433 and CDK6.

In conclusion, this study demonstrates that high miR-433 expression predicts poor outcome in OC patients by putatively rendering OC cells resistant to paclitaxel treatment through the induction of cellular senescence identifying this microRNA as a potential marker of chemoresponse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynaecological malignancy. Such mortality is predominantly associated with the development of an intrinsic and acquired resistance to chemotherapy, the lack of targeted therapies and the lack of biomarkers predicting response to standard treatment.

Our clinical data demonstrates that increased miR-433 expression in primary high grade serous OC (HGSOCs) is significantly associated with poor PFS (n=46, p=0.024). Interestingly, the IHC analysis of two miR-433 targets: MAD2 [1] and HDAC6 shows that low IHC levels of both proteins is also significantly associated with worse outcome (p=0.002 and 0.002 respectively; n=43). Additionally, the analysis of miR 433 in the publicly available TCGA dataset corroborates that high miR-433 is significantly correlated with worse OS for patients presenting with OC (n=558 and p=0.027). In vito, in a panel of OC cell lines, higher miR-433 and lower MAD2 and HDAC6 levels were associated with resistance to paclitaxel.

To further investigate the role of miR-433 in the cellular response to chemotherapy, we generated an OC cell line stably expressing miR-433 or miR-control. MTT viability assays and Western Blot analyses established that miR-433 cells were more resistant to paclitaxel treatment (50nM) compared to miR-controls. Importantly, we have shown for the first time that miR 433 induced senescence resulting in a chracteristic flattened morphology and down-regulation of phosphorylated Retinoblastoma (p Rb), a molecular marker of senescence. Surprisingly, miR 433 induced senescence was independent from two well recognised senescent drivers: namely p53/p21 and p16. To explore this further we performed an in silico analysis of seven microRNA platforms which indicated that miR 433 potentially targets Cyclin-dependent kinase CDK6, which promotes sustained phosphorylation of Rb and thus cell cycle progression. In vitro, the overexpression of pre-miR-433 resulted in diminished CDK6 expression demonstrating a novel interaction between miR-433 and CDK6.

In conclusion, this study demonstrates that high miR-433 expression predicts poor outcome in OC patients by putatively rendering OC cells resistant to paclitaxel treatment through the induction of cellular senescence identifying this microRNA as a potential marker of chemoresponse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of the mechanisms underlying the development of resistance to chemotherapy treatment is a gateway to the introduction of novel therapies and improved outcomes for women presenting with ovarian cancer (OC). The desired apoptotic death post-chemotherapy depends on an intact and fully functioning cell cycle machinery.

In this study we demonstrate that stable expression of miR-433 renders OC cells more resistant to paclitaxel treatment. Interestingly, only cells with the highest miR-433 survived paclitaxel suggesting the possible role of miR-433 in cancer recurrence. Importantly, for the first time we demonstrate that miR 433 induces cellular senescence, exemplified by a flattened morphology, the downregulation of phosphorylated Retinoblastoma (p Rb) and increased β galactosidase activity. Surprisingly, miR 433 induced senescence was independent of two well recognised senescent drivers: p21 and p16. Further in silico analysis followed by in vitro experiments identified CKD6 as a novel miR-433 target gene possibly explaining the observed p21 and p16-independent induction of cellular senescence. Another in silico identified miR-433 target gene was CDC27, a protein involved in the regulation of the cell cycle during mitosis. We demonstrate that the overexpression of pre-miR-433 leads to the downregulation of CDC27 in vitro revealing a novel interaction between miR-433 and CDC27, an integral cell cycle regulating protein.

Interestingly, miR-433 expressing cells also demonstrated an ability to impact their tumour microenvironment. We show that miR-433 is present in exosomes released from miR-433 overexpressing and high miR-433 naïve cells. Moreover, growth condition media (GCM) harvested from cells with high miR-433 have higher levels of IL-6 and IL-8, two key cytokines involved in the senescence associated secretory phenotype (SASP). Importantly, GCM from miR-433-enriched cells repressed the growth of co-cultured cells with initial studies showing a GCM-dependent induction of chemoresistance.

In conclusion, data in this study highlights how the aberrant expression miR-433 contributes to chemoresistance in OC cells. We postulate that standard chemotherapy, particularly paclitaxel, used to treat women with OC may have an attenuated ability to kill cells harbouring increased levels of miR-433, allowing for a subsequent chemoresistant phenotype post-therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Neisseria meningitidis can cause severe infection in humans. Polymorphism of Complement Factor H (CFH) is associated with altered risk of invasive meningococcal disease (IMD). We aimed to find whether polymorphism of other complement genes altered risk and whether variation of N. meningitidis factor H binding protein (fHBP) affected the risk association.

METHODS: We undertook a case-control study with 309 European cases and 5,200 1958 Birth Cohort and National Blood Service cohort controls. We used additive model logistic regression, accepting P<0.05 as significant after correction for multiple testing. The effects of fHBP subfamily on the age at infection and severity of disease was tested using the independent samples median test and Student's T test. The effect of CFH polymorphism on the N. meningitidis fHBP subfamily was investigated by logistic regression and Chi squared test.

RESULTS: Rs12085435 A in C8B was associated with odds ratio (OR) of IMD (0.35 [95% CI 0.19-0.67]; P = 0.03 after correction). A CFH haplotype tagged by rs3753396 G was associated with IMD (OR 0.56 [95% CI 0.42-0.76], P = 1.6x10-4). There was no bacterial load (CtrA cycle threshold) difference associated with carriage of this haplotype. Host CFH haplotype and meningococcal fHBP subfamily were not associated. Individuals infected with meningococci expressing subfamily A fHBP were younger than those with subfamily B fHBP meningococci (median 1 vs 2 years; P = 0.025).

DISCUSSION: The protective CFH haplotype alters odds of IMD without affecting bacterial load for affected heterozygotes. CFH haplotype did not affect the likelihood of infecting meningococci having either fHBP subfamily. The association between C8B rs12085435 and IMD requires independent replication. The CFH association is of interest because it is independent of known functional polymorphisms in CFH. As fHBP-containing vaccines are now in use, relationships between CFH polymorphism and vaccine effectiveness and side-effects may become important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The predatory bacterium Bdellovibrio bacteriovorus uses flagellar motility to locate regions rich in Gram-negative prey bacteria, colliding and attaching to prey and then ceasing flagellar motility. Prey are then invaded to form a "bdelloplast" in a type IV pilus-dependent process, and prey contents are digested, allowing Bdellovibrio growth and septation. After septation, Bdellovibrio flagellar motility resumes inside the prey bdelloplast prior to its lysis and escape of Bdellovibrio progeny. Bdellovibrio can also grow slowly outside prey as long flagellate host-independent (HI) cells, cultured on peptone-rich media. The B. bacteriovorus HD100 genome encodes three pairs of MotAB flagellar motor proteins, each of which could potentially form an inner membrane ion channel, interact with the FliG flagellar rotor ring, and produce flagellar rotation. In 2004, Flannagan and coworkers (R. S. Flannagan, M. A. Valvano, and S. F. Koval, Microbiology 150:649-656, 2004) used antisense RNA and green fluorescent protein (GFP) expression to downregulate a single Bdellovibrio motA gene and reported slowed release from the bdelloplast and altered motility of the progeny. Here we inactivated each pair of motAB genes and found that each pair contributes to motility, both predatorily, inside the bdelloplast and during HI growth; however, each pair was dispensable, and deletion of no pair abolished motility totally. Driving-ion studies with phenamil, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and different pH and sodium conditions indicated that all Mot pairs are proton driven, although the sequence similarities of each Mot pair suggests that some may originate from halophilic species. Thus, Bdellovibrio is a "dedicated motorist," retaining and expressing three pairs of mot genes.