942 resultados para experimental models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cellular basis of cardiac pacemaking activity, and specifically the quantitative contributions of particular mechanisms, is still debated. Reliable computational models of sinoatrial nodal (SAN) cells may provide mechanistic insights, but competing models are built from different data sets and with different underlying assumptions. To understand quantitative differences between alternative models, we performed thorough parameter sensitivity analyses of the SAN models of Maltsev & Lakatta (2009) and Severi et al (2012). Model parameters were randomized to generate a population of cell models with different properties, simulations performed with each set of random parameters generated 14 quantitative outputs that characterized cellular activity, and regression methods were used to analyze the population behavior. Clear differences between the two models were observed at every step of the analysis. Specifically: (1) SR Ca2+ pump activity had a greater effect on SAN cell cycle length (CL) in the Maltsev model; (2) conversely, parameters describing the funny current (If) had a greater effect on CL in the Severi model; (3) changes in rapid delayed rectifier conductance (GKr) had opposite effects on action potential amplitude in the two models; (4) within the population, a greater percentage of model cells failed to exhibit action potentials in the Maltsev model (27%) compared with the Severi model (7%), implying greater robustness in the latter; (5) confirming this initial impression, bifurcation analyses indicated that smaller relative changes in GKr or Na+-K+ pump activity led to failed action potentials in the Maltsev model. Overall, the results suggest experimental tests that can distinguish between models and alternative hypotheses, and the analysis offers strategies for developing anti-arrhythmic pharmaceuticals by predicting their effect on the pacemaking activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master’s thesis describes the research done at the Medical Technology Laboratory (LTM) of the Rizzoli Orthopedic Institute (IOR, Bologna, Italy), which focused on the characterization of the elastic properties of the trabecular bone tissue, starting from october 2012 to present. The approach uses computed microtomography to characterize the architecture of trabecular bone specimens. With the information obtained from the scanner, specimen-specific models of trabecular bone are generated for the solution with the Finite Element Method (FEM). Along with the FEM modelling, mechanical tests are performed over the same reconstructed bone portions. From the linear-elastic stage of mechanical tests presented by experimental results, it is possible to estimate the mechanical properties of the trabecular bone tissue. After a brief introduction on the biomechanics of the trabecular bone (chapter 1) and on the characterization of the mechanics of its tissue using FEM models (chapter 2), the reliability analysis of an experimental procedure is explained (chapter 3), based on the high-scalable numerical solver ParFE. In chapter 4, the sensitivity analyses on two different parameters for micro-FEM model’s reconstruction are presented. Once the reliability of the modeling strategy has been shown, a recent layout for experimental test, developed in LTM, is presented (chapter 5). Moreover, the results of the application of the new layout are discussed, with a stress on the difficulties connected to it and observed during the tests. Finally, a prototype experimental layout for the measure of deformations in trabecular bone specimens is presented (chapter 6). This procedure is based on the Digital Image Correlation method and is currently under development in LTM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alzheimer’s disease (AD), the most prevalent form of age-related dementia, is a multifactorial and heterogeneous neurodegenerative disease. The molecular mechanisms underlying the pathogenesis of AD are yet largely unknown. However, the etiopathogenesis of AD likely resides in the interaction between genetic and environmental risk factors. Among the different factors that contribute to the pathogenesis of AD, amyloid-beta peptides and the genetic risk factor apoE4 are prominent on the basis of genetic evidence and experimental data. ApoE4 transgenic mice have deficits in spatial learning and memory associated with inflammation and brain atrophy. Evidences suggest that apoE4 is implicated in amyloid-beta accumulation, imbalance of cellular antioxidant system and in apoptotic phenomena. The mechanisms by which apoE4 interacts with other AD risk factors leading to an increased susceptibility to the dementia are still unknown. The aim of this research was to provide new insights into molecular mechanisms of AD neurodegeneration, investigating the effect of amyloid-beta peptides and apoE4 genotype on the modulation of genes and proteins differently involved in cellular processes related to aging and oxidative balance such as PIN1, SIRT1, PSEN1, BDNF, TRX1 and GRX1. In particular, we used human neuroblastoma cells exposed to amyloid-beta or apoE3 and apoE4 proteins at different time-points, and selected brain regions of human apoE3 and apoE4 targeted replacement mice, as in vitro and in vivo models, respectively. All genes and proteins studied in the present investigation are modulated by amyloid-beta and apoE4 in different ways, suggesting their involvement in the neurodegenerative mechanisms underlying the AD. Finally, these proteins might represent novel potential diagnostic and therapeutic targets in AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary goals of this study were to develop a cell-free in vitro assay for the assessment of nonthermal electromagnetic (EMF) bioeffects and to develop theoretical models in accord with current experimental observations. Based upon the hypothesis that EMF effects operate by modulating Ca2+/CaM binding, an in vitro nitric oxide (NO) synthesis assay was developed to assess the effects of a pulsed radiofrequency (PRF) signal used for treatment of postoperative pain and edema. No effects of PRF on NO synthesis were observed. Effects of PRF on Ca2+/CaM binding were also assessed using a Ca2+-selective electrode, also yielding no EMF Ca2+/CaM binding. However, a PRF effect was observed on the interaction of hemoglobin (Hb) with tetrahydrobiopterin, leading to the development of an in vitro Hb deoxygenation assay, showing a reduction in the rate of Hb deoxygenation for exposures to both PRF and a static magnetic field (SMF). Structural studies using pyranine fluorescence, Gd3+ vibronic sideband luminescence and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were conducted in order to ascertain the mechanism of this EMF effect on Hb. Also, the effect of SMF on Hb oxygen saturation (SO2) was assessed under gas-controlled conditions. These studies showed no definitive changes in protein/solvation structure or SO2 under equilibrium conditions, suggesting the need for real-time instrumentation or other means of observing out-of-equilibrium Hb dynamics. Theoretical models were developed for EMF transduction, effects on ion binding, neuronal spike timing, and dynamics of Hb deoxygenation. The EMF sensitivity and simplicity of the Hb deoxygenation assay suggest a new tool to further establish basic biophysical EMF transduction mechanisms. If an EMF-induced increase in the rate of deoxygenation can be demonstrated in vivo, then enhancement of oxygen delivery may be a new therapeutic method by which clinically relevant EMF-mediated enhancement of growth and repair processes can occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present thesis was to investigate the influence of lower-limb joint models on musculoskeletal model predictions during gait. We started our analysis by using a baseline model, i.e., the state-of-the-art lower-limb model (spherical joint at the hip and hinge joints at the knee and ankle) created from MRI of a healthy subject in the Medical Technology Laboratory of the Rizzoli Orthopaedic Institute. We varied the models of knee and ankle joints, including: knee- and ankle joints with mean instantaneous axis of rotation, universal joint at the ankle, scaled-generic-derived planar knee, subject-specific planar knee model, subject-specific planar ankle model, spherical knee, spherical ankle. The joint model combinations corresponding to 10 musculoskeletal models were implemented into a typical inverse dynamics problem, including inverse kinematics, inverse dynamics, static optimization and joint reaction analysis algorithms solved using the OpenSim software to calculate joint angles, joint moments, muscle forces and activations, joint reaction forces during 5 walking trials. The predicted muscle activations were qualitatively compared to experimental EMG, to evaluate the accuracy of model predictions. Planar joint at the knee, universal joint at the ankle and spherical joints at the knee and at the ankle produced appreciable variations in model predictions during gait trials. The planar knee joint model reduced the discrepancy between the predicted activation of the Rectus Femoris and the EMG (with respect to the baseline model), and the reduced peak knee reaction force was considered more accurate. The use of the universal joint, with the introduction of the subtalar joint, worsened the muscle activation agreement with the EMG, and increased ankle and knee reaction forces were predicted. The spherical joints, in particular at the knee, worsened the muscle activation agreement with the EMG. A substantial increase of joint reaction forces at all joints was predicted despite of the good agreement in joint kinematics with those of the baseline model. The introduction of the universal joint had a negative effect on the model predictions. The cause of this discrepancy is likely to be found in the definition of the subtalar joint and thus, in the particular subject’s anthropometry, used to create the model and define the joint pose. We concluded that the implementation of complex joint models do not have marked effects on the joint reaction forces during gait. Computed results were similar in magnitude and in pattern to those reported in literature. Nonetheless, the introduction of planar joint model at the knee had positive effect upon the predictions, while the use of spherical joint at the knee and/or at the ankle is absolutely unadvisable, because it predicted unrealistic joint reaction forces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis analyses the hydrodynamic induced by an array of Wave energy Converters (WECs), under an experimental and numerical point of view. WECs can be considered an innovative solution able to contribute to the green energy supply and –at the same time– to protect the rear coastal area under marine spatial planning considerations. This research activity essentially rises due to this combined concept. The WEC under exam is a floating device belonging to the Wave Activated Bodies (WAB) class. Experimental data were performed at Aalborg University in different scales and layouts, and the performance of the models was analysed under a variety of irregular wave attacks. The numerical simulations performed with the codes MIKE 21 BW and ANSYS-AQWA. Experimental results were also used to calibrate the numerical parameters and/or to directly been compared to numerical results, in order to extend the experimental database. Results of the research activity are summarized in terms of device performance and guidelines for a future wave farm installation. The device length should be “tuned” based on the local climate conditions. The wave transmission behind the devices is pretty high, suggesting that the tested layout should be considered as a module of a wave farm installation. Indications on the minimum inter-distance among the devices are provided. Furthermore, a CALM mooring system leads to lower wave transmission and also larger power production than a spread mooring. The two numerical codes have different potentialities. The hydrodynamics around single and multiple devices is obtained with MIKE 21 BW, while wave loads and motions for a single moored device are derived from ANSYS-AQWA. Combining the experimental and numerical it is suggested –for both coastal protection and energy production– to adopt a staggered layout, which will maximise the devices density and minimize the marine space required for the installation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents results from experimental investigations of several different atmospheric pressure plasmas applications, such as Metal Inert Gas (MIG) welding and Plasma Arc Cutting (PAC) and Welding (PAW) sources, as well as Inductively Coupled Plasma (ICP) torches. The main diagnostic tool that has been used is High Speed Imaging (HSI), often assisted by Schlieren imaging to analyse non-visible phenomena. Furthermore, starting from thermo-fluid-dynamic models developed by the University of Bologna group, such plasma processes have been studied also with new advanced models, focusing for instance on the interaction between a melting metal wire and a plasma, or considering non-equilibrium phenomena for diagnostics of plasma arcs. Additionally, the experimental diagnostic tools that have been developed for industrial thermal plasmas have been used also for the characterization of innovative low temperature atmospheric pressure non equilibrium plasmas, such as dielectric barrier discharges (DBD) and Plasma Jets. These sources are controlled by few kV voltage pulses with pulse rise time of few nanoseconds to avoid the formation of a plasma arc, with interesting applications in surface functionalization of thermosensitive materials. In order to investigate also bio-medical applications of thermal plasma, a self-developed quenching device has been connected to an ICP torch. Such device has allowed inactivation of several kinds of bacteria spread on petri dishes, by keeping the substrate temperature lower than 40 degrees, which is a strict requirement in order to allow the treatment of living tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyzing and modeling relationships between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects in chemical datasets is a challenging task for scientific researchers in the field of cheminformatics. Therefore, (Q)SAR model validation is essential to ensure future model predictivity on unseen compounds. Proper validation is also one of the requirements of regulatory authorities in order to approve its use in real-world scenarios as an alternative testing method. However, at the same time, the question of how to validate a (Q)SAR model is still under discussion. In this work, we empirically compare a k-fold cross-validation with external test set validation. The introduced workflow allows to apply the built and validated models to large amounts of unseen data, and to compare the performance of the different validation approaches. Our experimental results indicate that cross-validation produces (Q)SAR models with higher predictivity than external test set validation and reduces the variance of the results. Statistical validation is important to evaluate the performance of (Q)SAR models, but does not support the user in better understanding the properties of the model or the underlying correlations. We present the 3D molecular viewer CheS-Mapper (Chemical Space Mapper) that arranges compounds in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kinds of features, like structural fragments as well as quantitative chemical descriptors. Comprehensive functionalities including clustering, alignment of compounds according to their 3D structure, and feature highlighting aid the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. Even though visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allows for the investigation of model validation results are still lacking. We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. New functionalities in CheS-Mapper 2.0 facilitate the analysis of (Q)SAR information and allow the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. Our approach reveals if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first chapter of this work has the aim to provide a brief overview of the history of our Universe, in the context of string theory and considering inflation as its possible application to cosmological problems. We then discuss type IIB string compactifications, introducing the study of the inflaton, a scalar field candidated to describe the inflation theory. The Large Volume Scenario (LVS) is studied in the second chapter paying particular attention to the stabilisation of the Kähler moduli which are four-dimensional gravitationally coupled scalar fields which parameterise the size of the extra dimensions. Moduli stabilisation is the process through which these particles acquire a mass and can become promising inflaton candidates. The third chapter is devoted to the study of Fibre Inflation which is an interesting inflationary model derived within the context of LVS compactifications. The fourth chapter tries to extend the zone of slow-roll of the scalar potential by taking larger values of the field φ. Everything is done with the purpose of studying in detail deviations of the cosmological observables, which can better reproduce current experimental data. Finally, we present a slight modification of Fibre Inflation based on a different compactification manifold. This new model produces larger tensor modes with a spectral index in good agreement with the date released in February 2015 by the Planck satellite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is focused on axions and axion like particles (ALPs) and their possible relation with the 3.55 keV photon line detected, in recent years, from galaxy clusters and other astrophysical objects. We focus on axions that come from string compactification and we study the vacuum structure of the resulting low energy 4D N=1 supergravity effective field theory. We then provide a model which might explain the 3.55 keV line through the following processes. A 7.1 keV dark matter axion decays in two light axions, which, in turn, are transformed into photons thanks to the Primakoff effect and the existence of a kinetic mixing between two U(1)s gauge symmetries belonging respectively to the hidden and the visible sector. We present two models, the first one gives an outcome inconsistent with experimental data, while the second can yield the desired result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past twenty years, new technologies have required an increasing use of mathematical models in order to understand better the structural behavior: finite element method is the one mostly used. However, the reliability of this method applied to different situations has to be tried each time. Since it is not possible to completely model the reality, different hypothesis must be done: these are the main problems of FE modeling. The following work deals with this problem and tries to figure out a way to identify some of the unknown main parameters of a structure. This main research focuses on a particular path of study and development, but the same concepts can be applied to other objects of research. The main purpose of this work is the identification of unknown boundary conditions of a bridge pier using the data acquired experimentally with field tests and a FEM modal updating process. This work doesn’t want to be new, neither innovative. A lot of work has been done during the past years on this main problem and many solutions have been shown and published. This thesis just want to rework some of the main aspects of the structural optimization process, using a real structure as fitting model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal models provide a basis for clarifying the complex pathogenesis of delayed cerebral vasospasm (DCVS) and for screening of potential therapeutic approaches. Arbitrary use of experimental parameters in current models can lead to results of uncertain relevance. The aim of this work was to identify and analyze the most consistent and feasible models and their parameters for each animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apart from one article published by Rabl and Sigrist in 1992 (Rechtsmedizin 2:156-158), there are no further reports on secondary skull fractures in shots from captive bolt guns. Up to now, the pertinent literature places particular emphasis on the absence of indirect lesions away from the impact point, when dealing with the wounding capacity of slaughterer's guns. The recent observation of two suicidal head injuries accompanied by skull fractures far away from the bolt's path gave occasion to experimental studies using simulants (glycerin soap, balls from gelatin) and skull brain models. As far as ballistic soap was concerned, the dimensions of the bolt's channel were assessed by multi-slice computed tomography before cutting the blocks open. The test shots to gelatin balls and to skull-brain models were documented by means of a high-speed motion camera. As expected, the typical temporary cavity effect of bullets fired from conventional guns could not be observed when captive bolt stunners were discharged. Nevertheless, the visualized transfer of kinetic energy justifies the assumption that the secondary fractures seen in thin parts of the skull were caused by a hydraulic burst effect.