969 resultados para epstein barr virus antigen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of viral encoded proteins that interact with RNA-dependent RNA polymerase (RdRp) is an important step towards unraveling the mechanism of replication. Sesbania mosaic virus (SeMV) RdRp was shown to interact strongly with p10 domain of polyprotein 2a and moderately with the protease domain. Mutational analysis suggested that the C-terminal disordered domain of RdRp is involved in the interaction with p10. Coexpression of full length RdRp and p10 resulted in formation of RdRp-p10 complex which showed significantly higher polymerase activity than RdRp alone. Interestingly, C Delta 43 RdRp also showed a similar increase in activity. Thus, p10 acts as a positive regulator of RdRp by interacting with the C-terminal disordered domain of RdRp. (C) 2014 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Productive infection of human endothelial cells with Japanese encephalitis virus (JEV), a single stranded RNA virus induces shedding of sHLA-E. We show here that sHLA-E that is released upon infection with this flavivirus can inhibit IL-2 and PMA mediated ERK 1/2 phosphorylation in two NK cell lines, Nishi and NKL. Virus infected or IFN-gamma treated cell culture supernatants containing sHLA-E were found to partially inhibit IL-2 mediated induction of CD25 molecules on NKL cells. It was also found that sHLA-E could inhibit IL-2 induced H-3]-thymidine incorporation suggesting that, similar to cell surface expressed HLA-E, sHLA-E could also inhibit NK cell responses. Hence JEV-induced shedding of sHLA-E needs further investigation to better understand immune responses in JEV infections since it may have a role in viral evasion of NK cell responses. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonstructural protein NSs, encoded by the S RNA of groundnut bud necrosis virus (GBNV) (genus Tospovirus, family Bunyaviridae) has earlier been shown to possess nucleic-acid-stimulated NTPase and 50 a phosphatase activity. ATP hydrolysis is an essential function of a true helicase. Therefore, NSs was tested for DNA helicase activity. The results demonstrated that GBNV NSs possesses bidirectional DNA helicase activity. An alanine mutation in the Walker A motif (K189A rNSs) decreased DNA helicase activity substantially, whereas a mutation in the Walker B motif resulted in a marginal decrease in this activity. The parallel loss of the helicase and ATPase activity in the K189A mutant confirms that NSs acts as a non-canonical DNA helicase. Furthermore, both the wild-type and K189A NSs could function as RNA silencing suppressors, demonstrating that the suppressor activity of NSs is independent of its helicase or ATPase activity. This is the first report of a true helicase from a negative-sense RNA virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphatic filariasis is a parasitic disease of tropical countries. This is a disfiguring and painful disease contracted in childhood, but the symptoms become apparent only in later years. Diagnosis of filarial infection is very crucial for the management of the disease. The main objective of this study was to develop a filarial antigen-based immunological assay for the diagnosis and surveillance of the disease. Monoclonal and polyclonal antibodies were raised to the recombinant protein Brugia malayi vespid allergen homologue (VAH). Capture enzyme-linked immunosorbent assay (ELISA) was standardized utilizing various combinations of antibodies and evaluated with serum samples of endemic normal (EN, n = 110), microfilaraemic (MF, n = 65), chronic pathology (CP, n = 45) and non-endemic normal (NEN, n = 10) individuals. Of the 230 samples tested, VAHcapture assay detected circulating antigen in 97.91% of bancroftian and 100% of brugian microfilaraemic individuals, and 5% of endemic normal individuals, comparable to the earlier reported SXP-1 antigen detection assay. However, the combination of VAH and SXP-1 (VS) capture ELISA was found to be more robust, detecting 100% of microfilaraemic individuals and with higher binding values. Thus an antigen capture immunoassay has been developed, which can differentiate active infection from chronic infection by detecting circulating filarial antigens in clinical groups of endemic areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant adeno-associated virus vectors based on serotype 8 (AAV8) have shown significant promise for liver-directed gene therapy. However, to overcome the vector dose dependent immunotoxicity seen with AAV8 vectors, it is important to develop better AAV8 vectors that provide enhanced gene expression at significantly low vector doses. Since it is known that AAV vectors during intracellular trafficking are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal machinery, we modified specific serine/threonine kinase or ubiquitination targets on the AAV8 capsid to augment its transduction efficiency. Point mutations at specific serine (S)/threonine (T)/lysine (K) residues were introduced in the AAV8 capsid at the positions equivalent to that of the effective AAV2 mutants, generated successfully earlier. Extensive structure analysis was carried out subsequently to evaluate the structural equivalence between the two serotypes. scAAV8 vectors with the wild-type (WT) and each one of the S/T -> Alanine (A) or K-Arginine (R) mutant capsids were evaluated for their liver transduction efficiency in C57BL/6 mice in vivo. Two of the AAV8-S -> A mutants (S279A and S671A), and a K137R mutant vector, demonstrated significantly higher enhanced green fluorescent protein (EGFP) transcript levels (similar to 9- to 46-fold) in the liver compared to animals that received WT-AAV8 vectors alone. The best performing AAV8 mutant (K137R) vector also had significantly reduced ubiquitination of the viral capsid, reduced activation of markers of innate immune response, and a concomitant two-fold reduction in the levels of neutralizing antibody formation in comparison to WT-AAV8 vectors. Vector bio-distribution studies revealed that the K137R mutant had a significantly higher and preferential transduction of the liver (106 vs. 7.7 vector copies/mouse diploid genome) when compared to WT-AAV8 vectors. To further study the utility of the K137R-AAV8 mutant in therapeutic gene transfer, we delivered human coagulation factor IX (h. FIX) under the control of liver-specific promoters (LP1 or hAAT) into C57BL/6 mice. The circulating levels of h. FIX: Ag were higher in all the K137R-AAV8 treated groups up to 8 weeks post-hepatic gene transfer. These studies demonstrate the feasibility of the use of this novel AAV8 vectors for potential gene therapy of hemophilia B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising ``multiantigen'' vaccine that elicits robust CMI. IMPORTANCE Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640 1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HuR is a ubiquitous, RNA binding protein that influences the stability and translation of several cellular mRNAs. Here, we report a novel role for HuR, as a regulator of proteins assembling at the 3' untranslated region (UTR) of viral RNA in the context of hepatitis C virus (HCV) infection. HuR relocalizes from the nucleus to the cytoplasm upon HCV infection, interacts with the viral polymerase (NS5B), and gets redistributed into compartments of viral RNA synthesis. Depletion in HuR levels leads to a significant reduction in viral RNA synthesis. We further demonstrate that the interaction of HuR with the 3' UTR of the viral RNA affects the interaction of two host proteins, La and polypyrimidine tract binding protein (PTB), at this site. HuR interacts with La and facilitates La binding to the 3' UTR, enhancing La-mediated circularization of the HCV genome and thus viral replication. In addition, it competes with PTB for association with the 3' UTR, which might stimulate viral replication. Results suggest that HuR influences the formation of a cellular/viral ribonucleoprotein complex, which is important for efficient initiation of viral RNA replication. Our study unravels a novel strategy of regulation of HCV replication through an interplay of host and viral proteins, orchestrated by HuR. IMPORTANCE Hepatitis C virus (HCV) is highly dependent on various host factors for efficient replication of the viral RNA. Here, we have shown how a host factor (HuR) migrates from the nucleus to the cytoplasm and gets recruited in the protein complex assembling at the 3' untranslated region (UTR) of HCV RNA. At the 3' UTR, it facilitates circularization of the viral genome through interaction with another host factor, La, which is critical for replication. Also, it competes with the host protein PTB, which is a negative regulator of viral replication. Results demonstrate a unique strategy of regulation of HCV replication by a host protein through alteration of its subcellular localization and interacting partners. The study has advanced our knowledge of the molecular mechanism of HCV replication and unraveled the complex interplay between the host factors and viral RNA that could be targeted for therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-alpha and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-alpha treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs - LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tobacco streak virus (TSV), the type member of Ilarvirus genus, is a major plant pathogen. TSV purified from infected plants consists of a ss-RNA genome encapsidated in spheroidal particles with diameters of 27, 30 and 33 nm constructed from multiple copies of a single species of coat protein (CP) subunits. Apart from protecting the viral genome, CPs of ilarviruses play several key roles in the life cycle of these viruses. Unlike the related bromo and cucumoviruses, ilarvirus particles are labile and pleomorphic, which has posed difficulties in their crystallization and structure determination. In the current study, a truncated TSV-CP was crystallized in two distinct forms and their structures were determined at resolutions of 2.4 angstrom and 2.1 angstrom, respectively. The core of TSV CP was found to possess the canonical beta-barrel jelly roll tertiary structure observed in several other viruses. Dimers of CP with swapped C-terminal arms (C-arm) were observed in both the crystal forms. The C-arm was found to be flexible and is likely to be responsible for the polymorphic and pleomorphic nature of TSV capsids. Consistent with this observation, mutations in the hinge region of the C-arm that reduce the flexibility resulted in the formation of more uniform particles. TSV CP was found to be structurally similar to that of Alfalfa mosaic virus (AMV) accounting for similar mechanism of genome activation in alfamo and ilar viruses. This communication represents the first report on the structure of the CP from an ilarvirus. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the beta H-beta I loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies-D6F10 (targeting abrin), anti-a-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic hepatitis C virus (HCV) infection represents a major health threat to global population. In India, approximately 15-20% of cases of chronic liver diseases are caused by HCV infection. Although, new drug treatments hold great promise for HCV eradication in infected individuals, the treatments are highly expensive. A vaccine for preventing or treating HCV infection would be of great value, particularly in developing countries. Several preclinical trials of virus-like particle (VLP) based vaccine strategies are in progress throughout the world. Previously, using baculovirus based system, we have reported the production of hepatitis C virus-like particles (HCV-LPs) encoding structural proteins for genotype 3a, which is prevalent in India. In the present study, we have generated HCV-LPs using adenovirus based system and tried different immunization strategies by using combinations of both kinds of HCV-LPs with other genotype 3a-based immunogens. HCV-LPs and peptides based ELISAs were used to evaluate antibody responses generated by these combinations. Cell-mediated immune responses were measured by using T-cell proliferation assay and intracellular cytokine staining. We observed that administration of recombinant adenoviruses expressing HCV structural proteins as final booster enhances both antibody as well as T-cell responses. Additionally, reduction of binding of VLP and JFH1 virus to human hepatocellular carcinoma cells demonstrated the presence of neutralizing antibodies in immunized sera. Taken together, our results suggest that the combined regimen of VLP followed by recombinant adenovirus could more effectively inhibit HCV infection, endorsing the novel vaccine strategy. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capsid protein (CP) of Sesbania mosaic virus (SeMV, a T=3 plant virus) consists of a disordered N-terminal R-domain and an ordered S-domain. Removal of the R-domain results in the formation of T=1 particles. In the current study, the R-domain was replaced with unrelated polypeptides of similar lengths: the B-domain of Staphylococcus aureus SpA, and SeMV encoded polypeptides P8 and P10. The chimeric proteins contained T=3 or larger virus-like particles (VLPs) and could not be crystallized. The presence of metal ions during purification resulted in a large number of heterogeneous nucleoprotein complexes. N Delta 65-B (R domain replaced with B domain) could also be purified in a dimeric form. Its crystal structure revealed T=1 particles devoid of metal ions and the B-domain was disordered. However, the B-domain was functional in N Delta 65-B VLPs, suggesting possible biotechnological applications. These studies illustrate the importance of N-terminal residues, metal ions and robustness of the assembly process. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Con el objetivo de evaluar la respuesta de dos variedades de frijol Phaseolus vulgaris L. al virus del mosaico común del frijol (BCMV) se llevó acabo este trabajo en dos etapas de investigación; La etapa I se realizó en la Universidad Nacional Agraria, en los meses de julio a septiembre de 1991, y la etapa II en la estación experimental La Compañía, en los meses de octubre a diciembre de 1991. Para la etapa I, se sembraron en 40 maceteras, semillas de frijol de las variedades Criolla A-1936 y Revolución 79. En la etapa II los tratamientos estaban arreglados en un Bloque Completamente al Azar en un arreglo de parcelas divididas con tres repeticiones. En las dos etapas las variedades fueron inoculadas mecánicamente en tres momentos a los 7, 15, y 21 días después de la emergencia (DDE), y un testigo sin inocular en la etapa I. Se describieron los síntomas y se tomaron los datos de rendimiento. En las dos etapas de investigación ambas variedades resultaron susceptibles al virus. Tendiendo a ser más afectada en los rendimientos la variedad Revolución 79 que la Criolla a-1936 en la etapa II. El momento de inoculación en el que las variedades fueron más afectadas fue a los 15 DDE y no a los 7 DDE y de manera más notable en la variedad Criolla A-1936, esta respuesta se atribuye a: la temperatura, la concentración del virus y a la respuesta de hipersensibilidad en el caso particular de la variedad Criolla A-1936.