994 resultados para element contents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic shear localization is a mode of failure that occurs in dynamic loading. It is characterized by thermal softening occurring over a very narrow region of a material and is usually a precursor to ductile fracture and catastrophic failure. This reference source is the first detailed study of the mechanics and modes of adiabatic shear localization in solids, and provides a systematic description of a number of aspects of adiabatic shear banding. The inclusion of the appendices which provide a quick reference section and a comprehensive collection of thermomechanical data allows rapid access and understanding of the subject and its phenomena. The concepts and techniques described in this work can usefully be applied to solve a multitude of problems encountered by those investigating fracture and damage in materials, impact dynamics, metal working and other areas. This reference book has come about in response to the pressing demand of mechanical and metallurgical engineers for a high quality summary of the knowledge gained over the last twenty years. While fulfilling this requirement, the book is also of great interest to academics and researchers into materials performance.

Table of Contents

1Introduction1
1.1What is an Adiabatic Shear Band?1
1.2The Importance of Adiabatic Shear Bands6
1.3Where Adiabatic Shear Bands Occur10
1.4Historical Aspects of Shear Bands11
1.5Adiabatic Shear Bands and Fracture Maps14
1.6Scope of the Book20
2Characteristic Aspects of Adiabatic Shear Bands24
2.1General Features24
2.2Deformed Bands27
2.3Transformed Bands28
2.4Variables Relevant to Adiabatic Shear Banding35
2.5Adiabatic Shear Bands in Non-Metals44
3Fracture and Damage Related to Adiabatic Shear Bands54
3.1Adiabatic Shear Band Induced Fracture54
3.2Microscopic Damage in Adiabatic Shear Bands57
3.3Metallurgical Implications69
3.4Effects of Stress State73
4Testing Methods76
4.1General Requirements and Remarks76
4.2Dynamic Torsion Tests80
4.3Dynamic Compression Tests91
4.4Contained Cylinder Tests95
4.5Transient Measurements98
5Constitutive Equations104
5.1Effect of Strain Rate on Stress-Strain Behaviour104
5.2Strain-Rate History Effects110
5.3Effect of Temperature on Stress-Strain Behaviour114
5.4Constitutive Equations for Non-Metals124
6Occurrence of Adiabatic Shear Bands125
6.1Empirical Criteria125
6.2One-Dimensional Equations and Linear Instability Analysis134
6.3Localization Analysis140
6.4Experimental Verification146
7Formation and Evolution of Shear Bands155
7.1Post-Instability Phenomena156
7.2Scaling and Approximations162
7.3Wave Trapping and Viscous Dissipation167
7.4The Intermediate Stage and the Formation of Adiabatic Shear Bands171
7.5Late Stage Behaviour and Post-Mortem Morphology179
7.6Adiabatic Shear Bands in Multi-Dimensional Stress States187
8Numerical Studies of Adiabatic Shear Bands194
8.1Objects, Problems and Techniques Involved in Numerical Simulations194
8.2One-Dimensional Simulation of Adiabatic Shear Banding199
8.3Simulation with Adaptive Finite Element Methods213
8.4Adiabatic Shear Bands in the Plane Strain Stress State218
9Selected Topics in Impact Dynamics229
9.1Planar Impact230
9.2Fragmentation237
9.3Penetration244
9.4Erosion255
9.5Ignition of Explosives261
9.6Explosive Welding268
10Selected Topics in Metalworking273
10.1Classification of Processes273
10.2Upsetting276
10.3Metalcutting286
10.4Blanking293
 Appendices297
AQuick Reference298
BSpecific Heat and Thermal Conductivity301
CThermal Softening and Related Temperature Dependence312
DMaterials Showing Adiabatic Shear Bands335
ESpecification of Selected Materials Showing Adiabatic Shear Bands341
FConversion Factors357
 References358
 Author Index369
 Subject Index375

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a translation of selected articles from the Japanese language publication Hiroshimaken Suisan Shikenjo Hokoku (Report of Hirshima Prefectural Fisheries Experimental Station), Hiroshima City, Japan, vol.22, no. 1, 1960, pages 1-76. Articles translated are: Haematological study of bacteria affected oysters, The distribution of oyster larvae and spatfalls in the Hiroshima City perimeter, On the investigation of the timing of spatfalls, On the prediction of oyster seeding at inner Hiroshima Bay, Oyster growth and its environment at the oyster farm in Hiroshima Bay

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4:2244-2251; Int. J. Multiphase Flow 2000; 26:1583-1607). To address the particle motion at a moderate Reynolds number, spectral element method is employed to provide an instantaneous wake flow field for particle dynamics equations, which are solved to make a detail classification of the patterns in relation to the Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes number at a high Froude number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared Froude number is introduced and threshold values of this parameter are evaluated that delineate the different regions of particle behavior. The parameter describes approximately the gravitational settling velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a little, the parameter can still make a good qualitative classification of particle motion patterns as the inner diameter changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix-free implicit cell-centered FV method. The pressure Poisson equation is solved by the node-based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered-mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix-free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid.