925 resultados para electrostatic deflector
Resumo:
The study aimed to evaluate the radial profile and the uniformity of water distribution of sprinkler manufactured by the company NaanDanJain, model 427 1/2 '' M and nozzle with 2.8 mm of internal diameter, operating at pressures of 150, 200, 300 and 400 kPa and five positions of the deflector (0, 20, 50, 80 and 100%). For the determination of the parameters evaluated, the grid method was used and with the help of computer application CATCH 3D, overlapping layers of water depths was calculated with ten spacing. The results show that the deflector adjustment influences the radius of wetness and the distribution profile while the uniformity of water application showed as an important mechanism, since it permits different behavior for the sprinkler, ensuring wide track of utilization of the equipment.
Resumo:
Xylella fastidiosa is the causal agent of citrus variegated chlorosis and Pierce's disease which are the major threat to the citrus and wine industries. The most accepted hypothesis for Xf diseases affirms that it is a vascular occlusion caused by bacterial biofilm, embedded in an extracellular translucent matrix that was deduced to be the exopolysaccharide fastidian. Fourier transform infrared spectroscopy analysis demonstrated that virulent cells which form biofilm on glass have low fastidian content similar to the weak virulent ones. This indicates that high amounts of fastidian are not necessary for adhesion. In this paper we propose a kinetic model for X fastidiosa adhesion, biofilm formation, and virulence based on electrostatic attraction between bacterial surface proteins and xylem walls. Fastidian is involved in final biofilm formation and cation sequestration in dilute sap. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
A ferrugem asiática da soja, causada pelo fungo Phakopsora pachyrhizi, é considerada a principal doença da soja, e, portanto, a escolha e o uso adequado dos equipamentos de pulverização são essenciais para seu controle. O objetivo deste trabalho foi avaliar o desempenho de diferentes equipamentos de pulverização aérea para o controle curativo da ferrugem da soja, utilizando o fungicida Impact 125 SC (flutriafol) a 0,5 L p c ha-1. Os seguintes tratamentos foram avaliados: atomizador Micronair AU 5000 (10 L ha-1 com óleo e 20 L ha-1 sem óleo na calda); atomizador Stol ARD (10 e 20 L ha-1 ambos com óleo) e o sistema eletrostático Spectrum (10 L ha-1 sem óleo a 64 e 71% de umidade relativa). Utilizou-se óleo de algodão (1,0 L ha-1) acrescido de emulsificante BR 455 a 0,025 L ha-1. O ensaio foi realizado na terceira aplicação de fungicidas, quando foram analisadas quatro repetições nas áreas aplicadas e quatro testemunhas não aplicadas para cada tratamento, avaliando-se a severidade da ferrugem, os depósitos de flutriafol nas folhas de soja e o percentual de redução de ferrugem. A análise dos depósitos nas folhas mostrou que não houve diferenças significativas entre os tratamentos. Os melhores controles da ferrugem foram obtidos com os tratamentos Micronair (10 L ha-1 com óleo), Stol (20 L ha-1 com óleo) e o sistema elestrostático (10 L ha-1) com a menor umidade relativa do ar (64 %).
Resumo:
O objetivo deste trabalho foi avaliar a deposição das gotas de pulverização, dotadas de carga elétrica (eletrostática), em comparação à técnica de pulverização convencional em crisântemo, com uso de diferentes pontas de pulverização. O experimento foi conduzido em delineamento inteiramente ao acaso, com oito tratamentos: combinação das pontas TXVK-3, AXI 110015, AXI 12002 TWIN e AXI 11003, com duas técnicas de pulverização (com e sem eletrostática), e quatro repetições. Cada repetição foi representada por 12 plantas, às quais foram afixados papéis do tipo mata-borrão na superfície abaxial e adaxial dos folíolos, e em duas posições da planta: ápice e base. Um corante marcador (Rodamina B) foi pulverizado na proporção de 5 g por 100 L d'água em cada um dos tratamentos. Os depósitos do marcador foram quantificados por fluorometria. As pontas com gotas de menor diâmetro mediano volumétrico (TXVK-3 e AXI 110015) apresentaram maiores depósitos na superfície abaxial da folha, quando se utilizou a pulverização eletrostática. Esse fato não foi observado, quando foram pulverizadas gotas com maior diâmetro mediano volumétrico e desprovidas de carga elétrica, nas diferentes partes da planta.
Resumo:
The treatment of colored and alkaline effluent has been a challenge to the textile industry. An alternative to remove the colors of those effluents is applying magnesium chloride as a coagulant agent. The magnesium ion, in high pH, hydrolyzes itself, forming the magnesium hydroxide which has a large adsorptive area and positive electrostatic charges able to act as an efficient coagulant. The bittern wastewater from the salt industries has been studied as a potential font of this magnesium ion. Nowadays, this bittern wastewater is evicted into the sea, without any treatment or other use. This thesis has evaluated the potential of applying the wastewater from the salt industries in the treatment of dyeing effluent containing indigo dye and alkaline pH. All the experiments were made in jar tests simulating the chemical coagulation, flocculation and decantation steps ranging the pH and the concentration of magnesium ion. Were obtained removals between 96% and 76% for turbidity, apparent color, and true color, respectively, using 200mg/L Mg2+. The reduction of costs with acid, when were used the salt industries wastewater, comparing with Al2(SO4)3, was 62%. For the degradation of organic matter remaining in the clarified, around 900 mg/L, was applyed the advanced process of oxidation: photo-Fenton. The preliminary results showed 57% reduction in DOC. According to the results obtained, the salt industries wastewater can be applied, as coagulant, in the physical-chemical treatment of the denim dyeing wastewater, so it is not necessary a previous adjust of pH, efficiently and economically
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lignins extracted from sugar cane bagasse using different alcohols in the organosolv-CO(2) supercritical pulping process have been applied in the fabrication of ultrathin films through the Langmuir-Blodgett technique. Langmuir films were characterized by surface pressure versus mean molecular area (Pi-A) isotherms to exploit the sensitivity of nanostructured lignin films to metallic ions (Cu(2+), Cd(2+) and Pb(2+)). The Pi-A isotherms were shifted to larger molecular areas when heavy metal ions are present into the subphase, which might be related to electrostatic repulsions between metallic ions entrapped within the lignin molecular structure. Taking the advantage of metal incorporation, Langmuir monolayers were transferred onto solid substrates forming Langmuir-Blodgett (LB) films to be used as a transducer in an "electronic tongue" system to detect Cu(2+) in aqueous solution below threshold standard established by the Brazilian regulation. Both techniques impedance spectroscopy and electrochemistry have been used in these experiments. Complementary, Fourier transform infrared (FTIR) spectroscopy recorded for LB films before and after soaking into Cu(2+) aqueous solution revealed an interaction between the lignin phenyl groups and the metallic ion. (C) 2007 Elsevier B.V.. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Topliss method was used to guide a synthetic path in support of drug discovery efforts toward the identification of potent antimycobacterial agents. Salicylic acid and its derivatives, p-chloro, p-methoxy, and m-chlorosalicylic acid, exemplify a series of synthetic compounds whose minimum inhibitory concentrations for a strain of Mycobacterium were determined and compared to those of the reference drug, p-aminosalicylic acid. Several physicochemical descriptors (including Hammett's sigma constant, ionization constant, dipole moment, Hansch constant, calculated partition coefficient, Sterimol-L and -B-4 and molecular volume) were considered to elucidate structure-activity relationships. Molecular electrostatic potential and molecular dipole moment maps were also calculated using the AM1 semi-empirical method. Among the new derivatives, m-chlorosalicylic acid showed the lowest minimum inhibitory concentration. The overall results suggest that both physicochemical properties and electronic features may influence the biological activity of this series of antimycobacterial agents and thus should be considered in designing new p-aminosalicylic acid analogs.
Resumo:
B3LYP/6-31 + + G** and MP2/6-31 + + G** calculations have been carried out to study six tautomers of the nucleic acid base cytosine in aqueous media. Solvent effects have been analyzed using the self-consistent reaction field theory with two continuum methods. Relative stabilities and optimized geometries have been calculated for the tautomers and compared with experimental data. The present results show the importance of electrostatic solvent effects in determining observable properties of the cytosine tautomers. The amino-oxo form (C1) is the most abundant tautomer in aqueous media while the other amino-oxo form (C4) is the most energetically favored when solvent effects are included. These results can be justified by the larger values of the dipole moments for both C1 and C4 tautomers. Theoretical and experimental results of the harmonic vibrational frequencies and rotational constants show good agreement. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new self-sustainable film was prepared through the sol-gel modified method, previously employed in our research group; sodium alginate was used as the polymer matrix, along with plasticizer glycerol, doped with titanium dioxide (TiO2) and tungsten trioxide (WO3). By varying WO3 concentration (0,8, 1,6, 2,4 and 3,2 μmol) and keeping TiO2 concentration constant (059 mmol), it was possible to study the contribution of these oxides on the obtained films morphological and electrical properties. Self-sustainable films have analyzed by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XDR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electrochemical Impedance Spectroscopy (EIS). By the IR specters, it was possible identify the TiO2, and posteriorly WO3, addition has provided dislocation of alginate characteristics bands to smaller vibrations frequencies indicating an electrostatic interaction between the oxides and the polymer matrix. Diffractograms show predominance of the amorphous phase in the films. SEM, along with EDX, analysis revealed self-sustainable films showed surface with no cracks and relative dispersion of the oxides throughout the polymer matrix. From Impedance analysis, it was observe increasing WO3 concentration to 2,4 μmol provided a reduction of films resistive properties and consequent improvement of conductive properties
Resumo:
Textile activity results in effluents with a variety of dyes. Among the several processes for dye-uptaking from these wastewaters, sorption is one of the most effective methods, chitosan being a very promising alternative for this end. The sorption of Methyl Orange by chitosan crosslinked particles was approached using equilibrium and kinetic analyses at different pH s. Besides the standard pseudo-order analysis normally effectuated (i.e. pseudo-first-order and pseudo-second-order), a novel approach involving a pseudo-nth-order kinetics was used, nbeing determined via non-linear regression, using the Levenberg-Marquardt method. Zeta potential measurements indicated that electrostatic interactions were important for the sorption process. Regarding equilibrium experiments, data were well fitted to a hybrid Langmuir-Freundlich isotherm, and estimated Gibbs free energy of adsorption as a function of mass of dye per area of chitosan showed that the process of adsorption becomes more homogeneous as the pH of the continuous phase decreased. Considering the kinetics of sorption, although a pseudo-nth-order description yielded good fits, a kinetic equation involving diffusion adsorption phenomena was found to be more consistent in terms of a physicochemical description of the sorption process
Resumo:
The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium