874 resultados para electronic healthcare data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the thesis is to assess the impact of depression in people with type 2 diabetes. Using Healthcare Utilization Databases, I estimated in a large population-based cohort with type 2 diabetes the incidence of depression over 10 year-period, identified the demographic and clinical predictors of depression, and determined the extent to which depression is a risk factor for acute and long-term complications and mortality. In the context of COVID-19 pandemic, I evaluated whether the presence of a history of depression in type 2 diabetes increased the Emergency Department (ED) access rate for diabetes-related complications, and I investigated changes in the incidence of depression during the first year of the pandemic. Findings from the first study indicated that developing depression was associated with being a woman, being over 65 years, living in rural areas, having insulin as initial diabetes medication and having comorbid conditions; the study also confirmed that depression was associated with an increased risk for acute and long-term diabetes complications and all-cause mortality. The second observational study showed a higher rate of ED access for diabetes-related complications during the pandemic in people with type 2 diabetes and a history of depression than in those without a history of depression, similar to what was observed in a pre-pandemic period. As shown in the third population-based study, the incidence of depression decreased in 2020 compared to 2019, mainly during the first and the second waves of the COVID-19 pandemic, when people probably had difficulty reaching healthcare services. This new real-world evidence will help healthcare professionals identify timely patients at high risk of developing depression. Lastly, policymakers and physicians will benefit from new evidence of the effects of the COVID-19 pandemic on depression in people with type 2 diabetes to ensure a high level of care during crisis periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the analysis and management of emergency healthcare processes through the use of advanced analytics and optimization approaches. Emergency processes are among the most complex within healthcare. This is due to their non-elective nature and their high variability. This thesis is divided into two topics. The first one concerns the core of emergency healthcare processes, the emergency department (ED). In the second chapter, we describe the ED that is the case study. This is a real case study with data derived from a large ED located in northern Italy. In the next two chapters, we introduce two tools for supporting ED activities. The first one is a new type of analytics model. Its aim is to overcome the traditional methods of analyzing the activities provided in the ED by means of an algorithm that analyses the ED pathway (organized as event log) as a whole. The second tool is a decision-support system, which integrates a deep neural network for the prediction of patient pathways, and an online simulator to evaluate the evolution of the ED over time. Its purpose is to provide a set of solutions to prevent and solve the problem of the ED overcrowding. The second part of the thesis focuses on the COVID-19 pandemic emergency. In the fifth chapter, we describe a tool that was used by the Bologna local health authority in the first part of the pandemic. Its purpose is to analyze the clinical pathway of a patient and from this automatically assign them a state. Physicians used the state for routing the patients to the correct clinical pathways. The last chapter is dedicated to the description of a MIP model, which was used for the organization of the COVID-19 vaccination campaign in the city of Bologna, Italy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine Learning makes computers capable of performing tasks typically requiring human intelligence. A domain where it is having a considerable impact is the life sciences, allowing to devise new biological analysis protocols, develop patients’ treatments efficiently and faster, and reduce healthcare costs. This Thesis work presents new Machine Learning methods and pipelines for the life sciences focusing on the unsupervised field. At a methodological level, two methods are presented. The first is an “Ab Initio Local Principal Path” and it is a revised and improved version of a pre-existing algorithm in the manifold learning realm. The second contribution is an improvement over the Import Vector Domain Description (one-class learning) through the Kullback-Leibler divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable solution, an improved probabilistic model, and state-of-the-art performances. Both methods are tested through several experiments, with a central focus on their relevance in life sciences. Results show that they improve the performances achieved by their previous versions. At the applicative level, two pipelines are presented. The first one is for the analysis of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at identifying genes that may be involved in biological processes (e.g., the transition of tissues from normal to cancer). In this project, an R package is released on CRAN to make the pipeline accessible to the bioinformatic Community through high-level APIs. The second pipeline is in the drug discovery domain and is useful for identifying druggable pockets, namely regions of a protein with a high probability of accepting a small molecule (a drug). Both these pipelines achieve remarkable results. Lastly, a detour application is developed to identify the strengths/limitations of the “Principal Path” algorithm by analyzing Convolutional Neural Networks induced vector spaces. This application is conducted in the music and visual arts domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis is the result of work conducted during a period of six months at the Strategy department of Automobili Lamborghini S.p.A. in Sant'Agata Bolognese (BO) and concerns the study and analysis of Big Data relating to Lamborghini's connected cars. The Big Data is a project of Connected Car Project House, that is an inter-departmental team which works toward the definition of the Lamborghini corporate connectivity strategy and its implementation in the product portfolio. The Data of the connected cars is one of the hottest topics right now in the automotive industry; in fact, all the largest automotive companies are investi,ng a lot in this direction, in order to derive the greatest advantages both from a purely economic point of view, because from these data you can understand a lot the behaviors and habits of each driver, and from a technological point of view because it will increasingly promote the development of 5G that will be an important enabler for the future of connectivity. The main purpose of the work by Lamborghini prospective is to analyze the data of the connected cars, in particular a data-set referred to connected Huracans that had been already placed on the market, and, starting from that point, derive valuable Key Performance Indicators (KPIs) on which the company could partly base the decisions to be made in the near future. The key result that we have obtained at the end of this period was the creation of a Dashboard, in which is possible to visualize many parameters and indicators both related to driving habits and the use of the vehicle itself, which has brought great insights on the huge potential and value that is present behind the study of these data. The final Demo of the project has received great interest, not only from the whole strategy department but also from all the other business areas of Lamborghini, making mostly a great awareness that this will be the road to follow in the coming years.