997 resultados para electromagnetic scattering
Resumo:
Numerical investigations on mutual interactions between two spatially overlapping standing electromagnetic solitons in a cold unmagnetized plasma are reported. It is found that an initial state comprising of two overlapping standing solitons evolves into different end states, depending on the amplitudes of the two solitons and the phase difference between them. For small amplitude solitons with zero phase difference, we observe the formation of an oscillating bound state whose period depends on their initial separation. These results suggest the existence of a bound state made of two solitons in the relativistic cold plasma fluid model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The propagation of an electromagnetic wave packet in an electron-positron plasma, in the form of coupled localized electromagnetic excitations, is investigated, from first principles. By means of the Poincare section method, a special class of superluminal localized nonlinear stationary solutions, existing along a separatrix curve, are proposed as intrinsic electromagnetic modes in a relativistic electron-positron plasma. The ratio of the envelope time scale to the carrier wave time scale of these envelope solitary waves critically depends on the carrier's phase velocity. In the strongly superluminal regime, v(ph)/c >> 1, the large difference between the envelope and carrier time scales enables us to carry out a multiscale perturbative analysis resulting in an analytical form of the solution envelope. The analytical prediction thus obtained is shown to be in agreement with the solution obtained via a direct numerical integration. Copyright (c) EPLA, 2012
Resumo:
Optical Thomson scattering has been implemented as a diagnostic of laser ablated plumes generated with second harmonic Nd:YAG laser radiation at 532 nm. Thomson scattering data with both spatial and temporal resolution has been collected, giving both electron density, and temperature distributions within the plume as a function of time. Although the spatial profiles do not match very well for simple models assuming either isothermal or isentropic expansion, consideration of the measured ablated mass indicates an isothermal expansion fits better than an isentropic expansion and indeed, at late time, the spatial profile of temperature is almost consistent with an isothermal approximation.
Resumo:
We have carried out optical Thomson scattering measurements from a laser induced breakdown in He at 1 atmosphere. The breakdown was created with a Nd:YAG laser with 9ns pulse duration and 400mJ pulse energy focused into a chamber filled with He. A second harmonic Nd: YAG laser with 9ns pulses and up to 80mJ energy was used to obtain temporally and spatially resolved data on the electron density and temperature. In parallel experiments, we measured the emission of the 447.1nm line from He I. Initial results suggest good agreement between densities inferred but full Abel inversion is needed for conclusive results.
Resumo:
A proof-of-concept study was reported on analysis of antigen–antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles in an imaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, individual Au nanoparticles (30 nm) were observed with high signal-to-noise ratio and they were effectively utilized to monitor changes in refractive index induced by specific binding of the adsorbates. Using PSA antigen as a model, a LSPR ?max shift of about 2.85 nm was recorded for a molecular binding corresponding to 0.1 pg ml-1 of the protein biomarker. This result successfully demonstrates a non-labeling detection system for proteins as well as thousands of different chemical or biological species, and it possesses a great potential as a sensitive, on-chip and multiplexing detection.
Resumo:
The combinatorial frequency generation by the periodic stacks of binary layers of anisotropic nonlinear dielectrics is examined. The products of nonlinear scattering are characterised in terms of the three-wave mixing processes. It is shown that the intensity of the scattered waves of combinatorial frequencies is strongly influenced by the constitutive and geometrical parameters of the anisotropic layers, and the frequency ratio and angles of incidence of pump waves. The enhanced efficiency of the frequency conversion at Wolf-Bragg resonances has been demonstrated for the lossless and lossy-layered structures. © 2012 O. V. Shramkova and A. G. Schuchinsky.
Resumo:
The combinatorial frequency generation by a Fibonacci type quasi-periodic dielectric multilayered structure illuminated by two plane waves has been analysed. The effects of the layer parameters and Fibonacci sequence order on the properties of the combinatorial frequency waves emitted from the stacked nonlinear layers are discussed.
Study of diffraction of electromagnetic waves on array of composite microstrip patches. (in Russian)
Resumo:
Self-organization(1,2) occurs in plasmas when energy progressively transfers from smaller to larger scales in an inverse cascade(3). Global structures that emerge from turbulent plasmas can be found in the laboratory(4) and in astrophysical settings; for example, the cosmic magnetic field(5,6,) collisionless shocks in supernova remnants(7) and the internal structures of newly formed stars known as Herbig-Haro objects(8). Here we show that large, stable electromagnetic field structures can also arise within counter-streaming supersonic plasmas in the laboratory. These surprising structures, formed by a yet unexplained mechanism, are predominantly oriented transverse to the primary flow direction, extend for much larger distances than the intrinsic plasma spatial scales and persist for much longer than the plasma kinetic timescales. Our results challenge existing models of counter-streaming plasmas and can be used to better understand large-scale and long-time plasma self-organization.
Resumo:
The properties of mixing and scattering of two non-collinear Gaussian pulses with different centre frequencies and lengths, incident on the finite nonlinear periodic layered dielectric structures, have been analysed. It is shown that at the backward emission grows with the number of layers and can reach the level of the forward emission in the direction of combinatorial frequency scattering.
Resumo:
A proof-of-concept study was reported on analysis of antigen-antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles on a microimaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, tiny 30 nm Au nanoparticles were effectively used as nanosensors to monitor changes in refractive index induced by every single binding of the adsorbates. The individual Au nanoparticles were observed with very high signal-to-noise ratio, and a LSPR ?max shift of about 2.5 nm accounting for the detection of PSA antigen with concentration as low as 0.1 pg ml-1 was recorded. This resulted in the successful demonstration of a non-labelling detection system for proteins as well as thousands of different chemical or biological species with possibility of miniaturization and multiplexing scheme.
Resumo:
The occurrence of rogue waves (freak waves) associated with electromagnetic pulse propagation interacting with a plasma is investigated, from first principles. A multiscale technique is employed to solve the fluid Maxwell equations describing weakly nonlinear circularly polarized electromagnetic pulses in magnetized plasmas. A nonlinear Schrödinger (NLS) type equation is shown to govern the amplitude of the vector potential. A set of non-stationary envelope solutions of the NLS equation are considered as potential candidates for the modeling of rogue waves (freak waves) in beam-plasma interactions, namely in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather. The variation of the structural properties of the latter structures with relevant plasma parameters is investigated, in particular focusing on the ratio between the (magnetic field dependent) cyclotron (gyro-)frequency and the plasma frequency. © 2013 IOP Publishing Ltd.
Resumo:
Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.