956 resultados para elastomer composites
Resumo:
The effect of an external flaw on the tensile strength of short kevlar fiber-thermoplastic composites has been studied with respect to fiber content, fiber orientation, location of the external flaw, and the temperature of test. The composites showed a three-step reduction in tensile strength with increasing flaw size. The critical flaw-length region was shifted to higher flaw-size levels with increasing fiber content. With increasing temperature, the critical flaw length was increased in the case of unfilled TPU, whereas it remained more or less constant in the case of short kevlar fiber-filled-TPU composite.
Characterization of Short Nylon-6 Fiber/Acrylonitrile Butadiene Rubber Composite by Thermogravimetry
Resumo:
The thermal degradation of short nylon-6 fiber reinforced acrylonitrile butadiene rubber (NBR) composites with and without epoxy-based bonding agent has been studied by thermogravimetric analysis (TGA). It was found that the onset of degradation shifted from 330.5 to 336.1°C in the presence of short nylon fiber, the optimum fiber loading being 20 phr. The maximum rate of degradation of the composites was lower than that of the unfilled rubber compound, and it decreased with increase in fiber concentration. The presence of epoxy resin-based bonding agent in the virgin elastomer and the composites improved the thermal stability. Results of kinetic studies showed that the degradation of NBR and the short nylon fiber reinforced composites followed first-order kinetics.
Resumo:
Acrylonitrile butadiene rubber (NBR) matrix was reinforced with different levels of short nylon fiber loading. Cure characteristics and mechanical properties of composites in longitudinal and transverse directions have been studied. Cure time was reduced while processability, as indicated by the minimum torque, was marginally reduced with increase in fiber loading. Tensile and tear properties improved with fiber concentration and the values were higher in longitudinal direction of fiber orientation. Abrasion resistance, resilience and compression set were increased in presence of fibers. Elongation at break values showed a drastic drop on introduction of fibers. Heat build up was higher for composites.
Resumo:
Thermal diffusivity of the composites of camphor sulphonic acid (CSA) doped polyaniline (PANI) and its composites with cobalt phthalocyanine (CoPc) has been measured using open cell photoacoustic technique. Analysis of the data shows that the effective thermal diffusivity value can be tuned by varying the relative volume fraction of the constituents. It is seen that polaron assisted heat transfer mechanism is dominant in CSA doped PANI and these composites exhibit a thermal diffusivity value which is intermediate to that of CSA doped PANI and CoPc. The results obtained are correlated with the electrical conductivity and hardness measurements carried out on the samples
Resumo:
Thermal diffusivity of the composites of camphor sulphonic acid (CSA) doped polyaniline (PANI) and its composites with cobalt phthalocyanine (CoPc) has been measured using open cell photoacoustic technique. Analysis of the data shows that the effective thermal diffusivity value can be tuned by varying the relative volume fraction of the constituents. It is seen that polaron assisted heat transfer mechanism is dominant in CSA doped PANI and these composites exhibit a thermal diffusivity value which is intermediate to that of CSA doped PANI and CoPc. The results obtained are correlated with the electrical conductivity and hardness measurements carried out on the samples.
Resumo:
Poly(propylene) (PP) reinforced with short glass fiber was modified with precipitated nanosilica (pnS) by melt mixing. The weight of the glass fiber was varied by keeping the pnS at optimum level. The properties of the composites were studied using universal testing machine, dynamic mechanic analyser (DMA), differential Scanning calorimetry (DSC) and thermo gravimetric analyser (TGA). The amount of the glass fiber required for a particular modulus could be reduced by the addition of nanosilica.
Resumo:
Polytetrafluoroethylene (PTFE) composites filled with Sr2Ce2Ti5O16 ceramic were prepared by a powder processing technique. The structures and microstructures of the composites were investigated by X-ray diffraction and scanning electron microscopy techniques. Differential scanning calorimetry showed that the ceramic filler had no effect on the melting point of the PTFE. The effect of the Sr2Ce2Ti5O16 ceramic content [0–0.6 volume fraction (vf)] on the thermal conductivity, coefficient of thermal expansion (CTE), specific heat capacity, and thermal diffusivity were investigated. As the vf of the Sr2Ce2Ti5O16 ceramic increased, the thermal conductivity of the specimen increased, and the CTE decreased. The thermal conductivity and thermal expansion of the PTFE/Sr2Ce2Ti5O16 composites were improved to 1.7 W m21 8C21 and 34 ppm/8C, respectively for 0.6 vf of the ceramics. The experimental thermal conductivity and CTE were compared with different theoretical models.
Resumo:
The study shows that standard plastics like polypropylene and high density polyethylene can be reinforced by adding nylon short fibres. Compared to the conventional glass reinforced thermoplastics this novel class of reinforced thermoplastics has the major advantage of recyclability. Hence such composites represent a new spectrum of recyclable polymer composites. The fibre length and fibre diameter used for reinforcement are critical parameters While there is a critical fibre length below which no effective reinforcement takes place, the reinforcement improves when the fibre diameter decreases due to increased surface area.While the fibres alone give moderate reinforcement, chemical modification of the matrix can further improve the strength and modulus of the composites. Maleic anhydride grafting in presence of styrene was found to be the most efficient chemical modification. While the fibre addition enhances the viscosity of the melt at lower shear rates, the enhancement at higher shear rate is only marginal. This shows that processing of the composite can be done in a similar way to that of the matrix polymer in high shear operations such as injection moulding. Another significant observation is the decrease in melt viscosity of the composite upon grafting. Thus chemical modification of matrix makes processing of the composite easier in addition to improving the mechanical load bearing capacity.For the development of a useful short fibre composite, selection of proper materials, optimum design with regard to the particular product and choosing proper processing parameters are most essential. Since there is a co-influence of many parameters, analytical solutions are difficult. Hence for selecting proper processing parameters 'rnold flow' software was utilized. The orientation of the fibres, mechanical properties, temperature profile, shrinkage, fill time etc. were determined using the software.Another interesting feature of the nylon fibre/PP and nylon fibre/HDPE composites is their thermal behaviour. Both nylon and PP degrade at the same temperature in single steps and hence the thermal degradation behaviour of the composites is also being predictable. It is observed that the thermal behaviour of the matrix or reinforcement does not affect each other. Almost similar behaviour is observed in the case of nylon fibre/HDPE composites. Another equally significant factor is the nucleating effect of nylon fibre when the composite melt cools down. In the presence of the fibre the onset of crystallization occurs at slightly higher temperature.When the matrix is modified by grafting, the onset of crystallization occurs at still higher temperature. Hence it may be calculated that one reason for the improvement in mechanical behaviour of the composite is the difference in crystallization behaviour of the matrix in presence of the fibre.As mentioned earlier, a major advantage of these composites is their recyclability. Two basic approaches may be employed for recycling namely, low temperature recycling and high temperature recycling. In the low temperature recycling, the recycling is done at a temperature above the melting point of the matrix, but below that of the fibres while in the high temperature route. the recycling is done at a temperature above the melting points of both matrix and fibre. The former is particularly interesting in that the recycled material has equal or even better mechanical properties compared to the initial product. This is possible because the orientation of the fibre can improve with successive recycling. Hence such recycled composites can be used for the same applications for which the original composite was developed. In high temperature recycling, the composite is converted into a blend and hence the properties will be inferior to that of the original composite, but will be higher than that of the matrix material alone.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology.
Resumo:
In the present study the preparation and characterisation of rubber ferrite composites (RFC) containing barium ferrite (BaF) and strontium ferrite (SrF) have been dealt with. The incorporation of the hard ferrites into natural and nitrile rubber was carried out according to a specific recipe for various loadings of magnetic fillers. For this, the ferrite materials namely barium ferrite and strontium ferrite having the general formula MO6Fe2O3 have been prepared by the conventional ceramic techniques. After characterisation they were incorporated into the natural and nitrile rubber matrix by mechanical method. Carbon black was also incorporated at different loading into the rubber ferrite composites to study its effect on various properties. The cure characteristics, mechanical, dielectric and magnetic properties of these composites were evaluated. The ac electrical conductivity of both the ceramic ferrites and rubber ferrite composites were also calculated using a simple relation. The investigations revealed that the rubber ferrite composites with the required dielectric and magnetic properties can be obtained by the incorporation of ferrite fillers into the rubber matrix, without compromising much on the processability and mechanical properties.
Resumo:
Three dimensional (3D) composites are strong contenders for the structural applications in situations like aerospace,aircraft and automotive industries where multidirectional thermal and mechanical stresses exist. The presence of reinforcement along the thickness direction in 3D composites,increases the through the thickness stiffness and strength properties.The 3D preforms can be manufactured with numerous complex architecture variations to meet the needs of specific applications.For hot structure applications Carbon-Carbon(C-C) composites are generally used,whose property variation with respect to temperature is essential for carrying out the design of hot structures.The thermomechanical behavior of 3D composites is not fully understood and reported.The methodology to find the thermomechanical properties using analytical modelling of 3D woven,3D 4-axes braided and 3D 5-axes braided composites from Representative Unit Cells(RUC's) based on constitutive equations for 3D composites has been dealt in the present study.High Temperature Unidirectional (UD) Carbon-Carbon material properties have been evaluated using analytical methods,viz.,Composite cylinder assemblage Model and Method of Cells based on experiments carried out on Carbon-Carbon fabric composite for a temparature range of 300 degreeK to 2800degreeK.These properties have been used for evaluating the 3D composite properties.From among the existing methods of solution sequences for 3D composites,"3D composite Strength Model" has been identified as the most suitable method.For thegeneration of material properies of RUC's od 3D composites,software has been developed using MATLAB.Correlaton of the analytically determined properties with test results available in literature has been established.Parametric studies on the variation of all the thermomechanical constants for different 3D performs of Carbon-Carbon material have been studied and selection criteria have been formulated for their applications for the hot structures.Procedure for the structural design of hot structures made of 3D Carbon-Carbon composites has been established through the numerical investigations on a Nosecap.Nonlinear transient thermal and nonlinear transient thermo-structural analysis on the Nosecap have been carried out using finite element software NASTRAN.Failure indices have been established for the identified performs,identification of suitable 3D composite based on parametric studies on strength properties and recommendation of this material for Nosecap of RLV based on structural performance have been carried out in this Study.Based on the 3D failure theory the best perform for the Nosecap has been identified as 4-axis 15degree braided composite.
Resumo:
The microwave and electrical applications of some important conducting polymers are analyzed in this investigation.One of the major drawbacks of conducting polymers is their poor processability,and a solution to overcome this is sought in this investigation.Conducting polymer thermoplastic composites were prepared by the insitu polymerization method to improve the extent of miscibility probably to a semi IPN level.The attractive features of the conducting composite developed are excellent processability,good microwave and electrical conductivity,good microwave absorption,load sensitivity and satisfactory mechanical properties.The composite shows typical frequency selective microwave absorption and refelection behaviors.
Resumo:
Precipitated silica is the most promising alternative for carbon black in tyre tread compounds due to its improved performance in terms of rolling resistance and wet grip.But its poor processability is a serious limitation to its commercial application.This thesis suggests a novel route for the incorporation of silica in rubbers,i.e.,precipitation of silica in rubber latex followed by coagulation of the latex to get rubber-silica maseterbatch.Composites with in situ precipitated silica showed improved processability and mechanical properties,when compared to conventional silica composites.