944 resultados para dye degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A structurally simple low molecular weight hydrogelator derived from isophthalic acid forms robust pH-responsive hydrogels capable of highly efficient and selective dye adsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two commercial enzyme products, Depol 40 (D) and Liquicell 2500 (L), were characterised from a biochemical standpoint and their potential to improve rumen degradation of forages was evaluated in vitro. Enzyme activities were determined at pH 5.5 and 39 degreesC. Analysis of the enzyme activities indicated that L contained higher xylanase and endoglucanase, but lower exoglucanase, pectinase and alpha-amylase activities than D. The Reading Pressure Technique (RPT) was used to investigate the effect of enzyme addition on the in vitro gas production (GP) and organic matter degradation (OMD) of alfalfa (Medicago sativa L.) stems and leaves. A completely randomised design with factorial arrangement of treatments was used. Both alfalfa fractions were untreated or treated with each enzyme at four levels, 20 h before incubation with rumen fluid. Each level of enzyme provided similar amounts of filter paper (D1, L1), endoglucanase (D2, L2), alpha-L-arabinofuranosidase (D3, L3) and xylanase units (D4, L4) per gram forage DM. Enzymes increased the initial OMD in both fractions, with improvements of up to 15% in leaves (D4) and 8% in stems (L2) after 12 h incubation. All enzyme treatments increased the extent of degradation (96 h incubation) in the leaf fractions, but only L2 increased final OMD in the stems. Direct hydrolysis of forage fractions during the pre-treatment period did not fully account for the magnitude of the increases in OMD, suggesting that the increase in rate of degradation was achieved through a combined effect of direct enzyme hydrolysis and synergistic action between the exogenous (applied) and endogenous (rumen) enzymes. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was carried out to determine the influence of fibrolytic enzymes derived from mesophilic or thermophilic fungal sources, added at ensiling, on time-course fermentation characteristics and in vitro rumen degradation of maize silage. The mesophilic enzyme was a commercial product derived from Trichodenna reesei (L), whereas the thermophilic enzyme was a crude extract produced from Thermoascus aurantiacus (Ta) in this laboratory. The fungus was cultured using maize cobs as a carbon source. The resulting fermentation extract was deionised to remove sugars and characterised for its protein concentration, main and side enzymic activities, optimal pH, protein molecular mass and isoelectric point. In an additional study, both enzymes were added to maize forage (333.5 g DM/kg, 70.0, 469.8, 227.1 and 307.5 g/kg DM of CP, NDF, ADF and starch, respectively) at two levels each, normalized according to xylanase activity, and ensiled in 0.5 kg capacity laboratory minisilos. Duplicate silos were opened at 2, 4, 8, 15, and 60 days after ensiling, and analysed for chemical characteristics. Silages from 60 days were bulked and in vitro gas production (GP) and organic matter degradability (OMD) profiles evaluated using the Reading Pressure Technique (RPT), in a completely randomised design. The crude enzyme extract contained mainly xylanase and endoglucanase activities, with very low levels of exoglucanase, which probably limited hydrolysis of filter paper. The extract contained three major protein bands of between 29 and 55 kDa, with mainly acidic isoelectric points. Ensiling maize with enzymes lowered (P < 0.05) the final silage pH, with this effect being observed throughout the ensiling process. All enzyme treatments reduced (P < 0.05) ADF contents. Treatments including Ta produced more gas (P < 0.05) than the controls after 24 h incubation in vitro, whereas end point gas production at 96 h was not affected. Addition of Ta increased (P < 0.01) OMD after 12 h (410 and 416 g/kg versus 373 g/kg), whereas both L and Ta increased (P < 0.05) OMD after 24 h. Addition of enzymes from mesophilic or thermophilic sources to maize forage at ensiling increased the rate of acidification of the silages and improved in vitro degradation kinetics, suggesting an improvement in the nutritive quality. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is proposed to determine the extent of degradation in the rumen involving a two-stage mathematical modeling process. In the first stage, a statistical model shifts (or maps) the gas accumulation profile obtained using a fecal inoculum to a ruminal gas profile. Then, a kinetic model determines the extent of degradation in the rumen from the shifted profile. The kinetic model is presented as a generalized mathematical function, allowing any one of a number of alternative equation forms to be selected. This method might allow the gas production technique to become an approach for determining extent of degradation in the rumen, decreasing the need for surgically modified animals while still maintaining the link with the animal. Further research is needed before the proposed methodology can be used as a standard method across a range of feeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to explore the environmental factors that determine plant Community distribution in northeast Algeria. This paper provides a quantitative analysis of the vegetation-environment relationships for a study site in the Cholt El Beida wetland, a RAMSAR site in Setif, Algeria. Sixty vegetation plots were sampled and analysed using TWINSPAN and Detrended Correspondence Analysis (DCA) in order to identify the principal vegetation communities and determine the environmental gradients associated with these. 127 species belonging to 41 families and 114 genera were recorded. Six of the recorded species were endemic representing 4.7% of the total species. The richest families were Compositae, Gramineae, Cruciferae and Chenopodiaceae. Therophytes and hemicryptophytes were the most frequent life forms. the Mediterranean floristic element is dominant and is represented by 39 species. The samples were classified into four main community types. The principal DCA axes represent gradients of soil salinity, moisture and anthropogenic pressure. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities and a greater understanding of controlling environmental factors. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in often critically endangered Mediterranean wetland areas. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium chloride-induced cell and nuclear degradation in the root meristems of sweetpotato [Ipomoea batatas (L.) Lam.] were determined using fluorescent microscopy and flow cytometry analysis. Two sweetpotato cultivars were grown in liquid Murashige and Skoog medium and subjected to 0 mM and 500 mM NaCl, with or without 15 mM CaCl2, for periods up to 24 h. Changes to the nuclei of root meristematic cells showed a similar pattern of damage to the nuclei using both fluorescent microscopy and flow cytometry analysis. Damage occurring after only a few hours was followed by nuclear degradation at 24 h. Flow cytometry histograms showed a reduction in G1 and G2 nuclei and an increase in degraded nuclei in NaCl-stressed roots. Salinity-induced nuclear degradation was alleviated by the addition of CaCl2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose ( to stimulate insulin) and essential amino acids (EAA) would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods: We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results: On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion: Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of synergistic effects between glucose + EAA infusion on muscle protein degradation or expression of components of the ubiquitin-proteasome proteolytic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation of bisphenol A and nonylphenol involves the unusual rearrangement of stable carboncarbon bonds. Some nonylphenol isomers and bisphenol A possess a quaternary alpha-carbon atom as a common structural feature. The degradation of nonylphenol in Sphingomonas sp. strain TTNP3 occurs via a type II ipso substitution with the presence of a quaternary alpha-carbon as a prerequisite. We report here a new degradation pathway of bisphenol A. Consequent to the hydroxylation at position C-4, according to a type 11 ipso substitution mechanism, the C-C bond between the phenolic moiety and the isopropyl group of bisphenol A is broken. Besides the formation of hydroquinone and 4-(2-hydroxypropan-2-yl) phenol as the main metabolites, further compounds resulting from molecular rearrangements consistent with a carbocationic intermediate were identified. Assays with resting cells or cell extracts of Sphingomonas sp. strain TTNP3 under an 18 02 atmosphere were performed. One atom of 180, was present in hydroquinone, resulting from the monooxygenation of bisphenol A and nonylphenol. The monooxygenase activity was dependent on both NADPH and flavin adenine dinucleotide. Various cytochrome P450 inhibitors had identical inhibition effects on the conversion of both xenobiotics. Using a mutant of Sphingomonas sp. strain TTNP3, which is defective for growth on nonylphenol, we demonstrated that the reaction is catalyzed by the same enzymatic system. In conclusion, the degradation of bisphenol A and nonylphenol is initiated by the same monooxygenase, which may also lead to ipso substitution in other xenobiotics containing phenol with a quaternary a-carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study explores for the first time, the effectiveness of photocatalytic oxidation of. humic acid (HA) in the increasingly important highly saline water. TiO2 (Degussa P25), TiO2 (Anatase), TiO2 (Rutile), TiO2 (Mesoporous) and ZnO dispersions were used as catalysts employing a medium pressure mercury lamp. The effect of platinum loading on P25 and zinc oxide was also investigated. The zinc oxide with 0.3% platinum loading was the most efficient catalyst. The preferred medium for the degradation of HA using ZnO is alkaline, whereas for TiO2 it is acidic. In addition, a comparative study of HA decomposition in artificial seawater (ASW) and natural seawater (NSW) is reported, and the surface areas and band gaps of the catalysts employed were also determined. A spectrophotometric method was used to estimate the extent of degradation of HA. (C) 2003 Elsevier Science B.V. All rights reserved.